Code Design with EXIT Charts

Iterative decoding provides high performance at low complexity for many state-of-the-art codes, like turbo codes, low-density parity-check (LDPC) codes, and irregular repeat accumulate codes, as well as for many iterative receiver structures. In order to achieve such high performance, the codes need to be designed such that iterative decoding works well. The extrinsic information transfer (EXIT) chart method is a powerful tool to analyze the iterative decoding process and to accomplish the required code design. Furthermore, it provides intuition for the decoding process, and allows to formulate the code design problem in many cases as a convex optimization problem.

[1]  Claude Berrou,et al.  The ten-year-old turbo codes are entering into service , 2003, IEEE Commun. Mag..

[2]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[3]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[4]  Troels Pedersen,et al.  Analysis and Design of Binary Message Passing Decoders , 2012, IEEE Transactions on Communications.

[5]  Laurent Schmalen,et al.  EXIT Chart Based System Design for Iterative Source-Channel Decoding with Fixed-Length Codes , 2011, IEEE Transactions on Communications.

[6]  Shlomo Shamai,et al.  Extremes of information combining , 2005, IEEE Transactions on Information Theory.

[7]  Simon Litsyn,et al.  EXIT functions for binary input memoryless symmetric channels , 2006, IEEE Transactions on Communications.

[8]  Giuseppe Caire,et al.  Iterative multiuser joint decoding: Unified framework and asymptotic analysis , 2002, IEEE Trans. Inf. Theory.

[9]  Lajos Hanzo,et al.  Efficient Computation of EXIT Functions for Nonbinary Iterative Decoding , 2006, IEEE Transactions on Communications.

[10]  Johannes B. Huber,et al.  Information Combining , 2006, Found. Trends Commun. Inf. Theory.

[11]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[12]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[13]  Michael Tüchler,et al.  Design of Serially Concatenated Systems Depending on the Block Length , 2004, IEEE Trans. Commun..

[14]  S. Brink Rate one-half code for approaching the Shannon limit by 0.1 dB , 2000 .

[15]  S. Brink Convergence of iterative decoding , 1999 .

[16]  Gianluigi Ferrari,et al.  LDPC Coded Modulations , 2009 .

[17]  Sarah J. Johnson,et al.  Iterative Error Correction: Turbo, Low-Density Parity-Check and Repeat-Accumulate Codes , 2009 .

[18]  Ingmar Land,et al.  Reliability information in channel decoding: practical aspects and information theoretical bounds , 2005 .

[19]  H. Jin,et al.  Irregular repeat accumulate codes , 2000 .

[20]  Dariush Divsalar,et al.  Iterative turbo decoder analysis based on density evolution , 2001, IEEE J. Sel. Areas Commun..

[21]  L. Litwin,et al.  Error control coding , 2001 .

[22]  Jörg Kliewer,et al.  An efficient variable-length code construction for iterative source-channel decoding , 2009, IEEE Transactions on Communications.

[23]  T. Moon Error Correction Coding: Mathematical Methods and Algorithms , 2005 .

[24]  Andrew C. Singer,et al.  Turbo equalization: principles and new results , 2002, IEEE Trans. Commun..

[25]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[26]  Michael Horstein,et al.  Review of 'Low-Density Parity-Check Codes' (Gallager, R. G.; 1963) , 1964, IEEE Transactions on Information Theory.

[27]  Johannes B. Huber,et al.  Analysis and design of power-efficient coding schemes with parallel concatenated convolutional codes , 2006, IEEE Transactions on Communications.

[28]  Dariush Divsalar,et al.  Coding theorems for 'turbo-like' codes , 1998 .

[29]  Rolf Johannesson,et al.  Fundamentals of Convolutional Coding , 1999 .

[30]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[31]  Shlomo Shamai,et al.  Constrained Information Combining: Theory and Applications for LDPC Coded Systems , 2007, IEEE Transactions on Information Theory.

[32]  Peter Adam Hoeher,et al.  Computation of symbol-wise mutual information in transmission systems with LogAPP decoders and application to EXIT charts , 2015 .

[33]  Alex J. Grant,et al.  Irregular repeat accumulate codes with few iterations for the binary adder channel , 2012, 2012 7th International Symposium on Turbo Codes and Iterative Information Processing (ISTC).

[34]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[35]  Johannes B. Huber,et al.  Bounds on mutual information for simple codes using information combining , 2005, Ann. des Télécommunications.

[36]  Peter Adam Hoeher,et al.  Partially Systematic Rate 1/2 Turbo Codes , 2000 .

[37]  Lars K. Rasmussen,et al.  Unifying Analysis and Design of Rate-Compatible Concatenated Codes , 2011, IEEE Transactions on Communications.

[38]  Martin Bossert,et al.  Channel Coding for Telecommunications , 1999 .

[39]  Zhenning Shi,et al.  Iterative multiuser detection and error control code decoding in random CDMA , 2006, IEEE Transactions on Signal Processing.

[40]  Xiaodong Wang,et al.  EXIT chart analysis of turbo multiuser detection , 2005, IEEE Trans. Wirel. Commun..

[41]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[42]  H.-A. Loeliger,et al.  An introduction to factor graphs , 2004, IEEE Signal Process. Mag..

[43]  Andrea Montanari,et al.  Maxwell Construction: The Hidden Bridge Between Iterative and Maximum a Posteriori Decoding , 2005, IEEE Transactions on Information Theory.

[44]  T. H. Liew,et al.  Turbo Coding, Turbo Equalisation and Space-Time Coding: EXIT-Chart-Aided Near-Capacity Designs for Wireless Channels , 2011 .

[45]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[46]  Lu Zhao,et al.  Design and analysis of bit interleaved coded space-time modulation , 2008, IEEE Transactions on Communications.

[47]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[48]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[49]  Stephan ten Brink,et al.  Design of repeat-accumulate codes for iterative detection and decoding , 2003, IEEE Trans. Signal Process..

[50]  Alex J. Grant,et al.  Convergence analysis and optimal scheduling for multiple concatenated codes , 2005, IEEE Transactions on Information Theory.

[51]  Andre Neubauer Coding Theory: Algorithms, Architectures and Applications , 2011 .

[52]  Stephan ten Brink,et al.  Designing Iterative Decoding Schemes with the Extrinsic Information Transfer Chart , 2001 .

[53]  Alex Grant Iteration-constrained design of IRA codes , 2012 .

[54]  Stephan ten Brink,et al.  Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.

[55]  Johannes B. Huber,et al.  Bounds on information combining , 2005, IEEE Transactions on Information Theory.

[56]  David Burshtein,et al.  Design and analysis of nonbinary LDPC codes for arbitrary discrete-memoryless channels , 2005, IEEE Transactions on Information Theory.

[57]  Joachim Hagenauer,et al.  The exit chart - introduction to extrinsic information transfer in iterative processing , 2004, 2004 12th European Signal Processing Conference.

[58]  Anne Abt Coordinated Multiuser Communications , 2016 .

[59]  Giuseppe Caire,et al.  Design methods for irregular repeat-accumulate codes , 2003, IEEE Transactions on Information Theory.

[60]  Patrick Robertson,et al.  Optimal and sub-optimal maximum a posteriori algorithms suitable for turbo decoding , 1997, Eur. Trans. Telecommun..

[61]  Alain Glavieux,et al.  Iterative correction of intersymbol interference: Turbo-equalization , 1995, Eur. Trans. Telecommun..

[62]  Stephan ten Brink,et al.  Code characteristic matching for iterative decoding of serially concatenated codes , 2001, Ann. des Télécommunications.

[63]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[64]  S. ten Brink,et al.  Code doping for triggering iterative decoding convergence , 2001 .

[65]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[66]  Erold W. Hinds,et al.  Error-correction coding , 1996 .

[67]  Stephan ten Brink,et al.  Design of low-density parity-check codes for modulation and detection , 2004, IEEE Transactions on Communications.

[68]  Richard E. Blahut,et al.  Convergence Analysis and BER Performance of Finite-Length Turbo Codes , 2007, IEEE Transactions on Communications.

[69]  Rüdiger L. Urbanke,et al.  Efficient encoding of low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[70]  Gottfried Lechner,et al.  Improved Sum-Min Decoding for Irregular LDPC Codes , 2006 .