Retraction Note to: A joint model for analyzing topic and sentiment dynamics from large-scale online news

The Editors-in-Chief have retracted “A joint model for analyzing topic and sentiment dynamics from large-scale online news” [1] because the article shows significant overlap with a previously published article [2] without proper citation.

[1]  Alice H. Oh,et al.  Aspect and sentiment unification model for online review analysis , 2011, WSDM '11.

[2]  Kevin C. Almeroth,et al.  Tailored news in the palm of your hand: a multi-perspective transparent approach to news recommendation , 2013, WWW.

[3]  Jianwen Zhang,et al.  Sentiment Topic Model with Decomposed Prior , 2013, SDM.

[4]  Iryna Gurevych,et al.  Extracting Opinion Targets in a Single and Cross-Domain Setting with Conditional Random Fields , 2010, EMNLP.

[5]  Michael Röder,et al.  Exploring the Space of Topic Coherence Measures , 2015, WSDM.

[6]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[7]  Yue Zhang,et al.  Improving Twitter Sentiment Classification Using Topic-Enriched Multi-Prototype Word Embeddings , 2016, AAAI.

[8]  Yan Zhao,et al.  Sentiment Analysis on News Comments Based on Supervised Learning Method , 2014, MUE 2014.

[9]  Chong Wang,et al.  Continuous Time Dynamic Topic Models , 2008, UAI.

[10]  Bing Xiang,et al.  Improving Twitter Sentiment Analysis with Topic-Based Mixture Modeling and Semi-Supervised Training , 2014, ACL.

[11]  Claire Cardie,et al.  Improving Agreement and Disagreement Identification in Online Discussions with A Socially-Tuned Sentiment Lexicon , 2014, WASSA@ACL.

[12]  Andrew McCallum,et al.  Topics over time: a non-Markov continuous-time model of topical trends , 2006, KDD '06.

[13]  Bruno Pouliquen,et al.  Sentiment Analysis in the News , 2010, LREC.

[14]  Jon Atle Gulla,et al.  Evaluating Feature Sets and Classifiers for Sentiment Analysis of Financial News , 2014, 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT).

[15]  Christopher Potts,et al.  Learning Word Vectors for Sentiment Analysis , 2011, ACL.

[16]  Guolong Chen,et al.  Topic sentiment trend model: Modeling facets and sentiment dynamics , 2012, 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE).

[17]  Yasushi Sakurai,et al.  Online multiscale dynamic topic models , 2010, KDD.

[18]  Sabine Loudcher,et al.  A Joint Model for Topic-Sentiment Evolution over Time , 2014, 2014 IEEE International Conference on Data Mining.

[19]  Stefan M. Rüger,et al.  Weakly Supervised Joint Sentiment-Topic Detection from Text , 2012, IEEE Transactions on Knowledge and Data Engineering.

[20]  David M. Blei,et al.  Probabilistic topic models , 2012, Commun. ACM.

[21]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[22]  Alice H. Oh,et al.  A Hierarchical Aspect-Sentiment Model for Online Reviews , 2013, AAAI.

[23]  Eric Gilbert,et al.  A Parsimonious Language Model of Social Media Credibility Across Disparate Events , 2017, CSCW.

[24]  Eugene Agichtein,et al.  TM-LDA: efficient online modeling of latent topic transitions in social media , 2012, KDD.

[25]  Estela Saquete Boró,et al.  TimeML Events Recognition and Classification: Learning CRF Models with Semantic Roles , 2010, COLING.

[26]  Ivan Titov,et al.  Modeling online reviews with multi-grain topic models , 2008, WWW.

[27]  Atsushi Fujii,et al.  Extracting Condition-Opinion Relations Toward Fine-grained Opinion Mining , 2015, EMNLP.

[28]  Timothy Baldwin,et al.  Automatic Evaluation of Topic Coherence , 2010, NAACL.

[29]  Yulan He,et al.  Joint sentiment/topic model for sentiment analysis , 2009, CIKM.

[30]  Jon Atle Gulla,et al.  Dynamic Topic-Based Sentiment Analysis of Large-Scale Online News , 2016, WISE.

[31]  Ming Zhou,et al.  Learning Sentiment-Specific Word Embedding for Twitter Sentiment Classification , 2014, ACL.