Towards efficient texture classification and abnormality detection

One of the fundamental issues in image processing and machine vision is texture, specifically texture feature extraction, classification and abnormality detection. This thesis is concerned with the analysis and classification of natural and random textures, where the building elements and the structure of texture are not clearly determinable, hence statistical and signal processing approaches are more appropriate. We investigate the advantages of multi-scale/multidirectional signal processing methods, higher order statistics-based schemes, and computationally low cost texture analysis algorithms. Consequently these advantages are combined to form novel algorithms. We develop a multi-scale/multi-directional Walsh-Hadamard transform for fast and robust texture feature extraction, where scale and angular decomposition properties are integrated into an ordinary Walsh-Hadamard transform, to increase its texture classification performance. We also introduce a highly accurate Gabor Composition method for texture abnormality detection which is a combination of a signal processing and a statistical method, namely Gabor filters and co-occurrence matrices. Furthermore, to overcome the practical drawbacks of traditional classification approaches, that require an extensive training stage, we introduce a method based on restructured eigenfilters for texture abnormality detection within a novelty detection framework. This demands only a minimal training stage using a few normal samples. The proposed schemes are compared with commonly used texture classification methods on different image sets, including a high resolution outdoor scene database, samples of the VisTex colour texture suite, and randomly textured normal and abnormal tiles. The results are then analysed in order to evaluate texture classification performance, based upon accuracy, generality and computational costs.

[1]  Barry T. Thomas,et al.  A neural-network virtual-reality mobility aid for the severely visually impaired , 1998 .

[2]  Eero P. Simoncelli,et al.  Texture characterization via joint statistics of wavelet coefficient magnitudes , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[3]  A. Ravishankar Rao,et al.  Identifying High Level Features of Texture Perception , 1993, CVGIP Graph. Model. Image Process..

[4]  Jun Wang,et al.  A computer vision system for wineglass defect inspection via Gabor-filter-based texture features , 2000, Inf. Sci..

[5]  Angus Clark,et al.  Region Classification for the Interpretation of Video Sequences , 1999 .

[6]  M. Landy Texture perception , 1996 .

[7]  Cordelia Schmid,et al.  Constructing models for content-based image retrieval , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[8]  B. Sankur,et al.  Applications of Walsh and related functions , 1986 .

[9]  E. R. Davies,et al.  Machine vision - theory, algorithms, practicalities , 2004 .

[10]  Jim Austin,et al.  Novelty detection in airframe strain data , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[11]  Nathalie Japkowicz,et al.  A Novelty Detection Approach to Classification , 1995, IJCAI.

[12]  Ramon Baldrich,et al.  Texture and color features for tile classification , 1999, Industrial Lasers and Inspection.

[13]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[15]  Hassan J. Eghbali,et al.  Image enhancement using a high sequency ordered hadamard transform filtering (HSHTF) , 1980, Comput. Graph..

[16]  Jaume Escofet,et al.  Detection of local defects in textile webs using Gabor filters , 1996, Other Conferences.

[17]  Erkki Oja,et al.  Texture Classification with Single- and Multiresolution Co-Occurrence Maps , 1998, Int. J. Pattern Recognit. Artif. Intell..

[18]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Kristin J. Dana,et al.  Compact representation of bidirectional texture functions , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[20]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[21]  Kam S. Tso,et al.  Remote surface inspection system , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[22]  David A Clausi An analysis of co-occurrence texture statistics as a function of grey level quantization , 2002 .

[23]  Dominique Valentin,et al.  Neural Networks , 1998 .

[24]  J. M. Hans du Buf,et al.  A review of recent texture segmentation and feature extraction techniques , 1993 .

[25]  Paul F. Whelan,et al.  Experiments in colour texture analysis , 2001, Pattern Recognit. Lett..

[26]  William E. Higgins,et al.  Gabor filter design for multiple texture segmentation , 1996 .

[27]  Hoon Sohn,et al.  Novelty Detection Using Auto-Associative Neural Network , 2001, Dynamic Systems and Control.

[28]  Roland T. Chin Automated visual inspection techniques and applications: A bibliography , 1982, Pattern Recognit..

[29]  David A. Clausi,et al.  Designing Gabor filters for optimal texture separability , 2000, Pattern Recognit..

[30]  John Erik Hershey,et al.  Hadamard matrix analysis and synthesis , 1996 .

[31]  Majid Mirmehdi,et al.  Perceptual Image Indexing and Retrieval , 2002, J. Vis. Commun. Image Represent..

[32]  Julian Florez,et al.  Color machine vision system for process control in the ceramics industry , 1997, Other Conferences.

[33]  F. Ade,et al.  Characterization of textures by ‘Eigenfilters’ , 1983 .

[34]  Ajay Kumar,et al.  Defect detection in textured materials using optimized filters , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[35]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[36]  Maria Petrou,et al.  Automatic registration of ceramic tiles for the purpose of fault detection , 2000, Machine Vision and Applications.

[37]  Thomas F. El-maraghi An Implementation of Heeger and Bergen's Texture Analysis/Synthesis Algorithm , 1997 .

[38]  Sameer Singh,et al.  An approach to novelty detection applied to the classification of image regions , 2004, IEEE Transactions on Knowledge and Data Engineering.

[39]  Bernard Widrow,et al.  The basic ideas in neural networks , 1994, CACM.

[40]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[42]  F. López,et al.  A Study of Registration Methods for Ceramic Tile Inspection Purposes , 2001 .

[43]  Robert Azencott,et al.  Texture Classification Using Windowed Fourier Filters , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Michael Unser,et al.  Feature extraction and decision procedure for automated inspection of textured materials , 1984, Pattern Recognit. Lett..

[45]  Philippe Color Space Transformations , 2006 .

[46]  D. Sagi,et al.  Gabor filters as texture discriminator , 1989, Biological Cybernetics.

[47]  J. Bergen,et al.  Computational Modeling of Visual Texture Segregation , 1991 .

[48]  Torfinn Taxt,et al.  Local frequency features for texture classification , 1994, Pattern Recognit..

[49]  Ajay Kumar,et al.  Neural network based detection of local textile defects , 2003, Pattern Recognit..

[50]  Andrew B. Watson,et al.  Image Compression Using the Discrete Cosine Transform , 1994 .

[51]  Dong-Chen He,et al.  Textural filters based on the texture spectrum , 1991, Pattern Recognit..

[52]  Moncef Gabbouj,et al.  Rock Texture Retrieval Using Gray Level Co-occurrence Matrix , 2002 .

[53]  M. Unser Local linear transforms for texture measurements , 1986 .

[54]  Dmitry Chetverikov,et al.  MEASURING THE DEGREE OF TEXTURE REGULARITY. , 1984 .

[55]  John W. Fisher,et al.  Flexible histograms: a multiresolution target discrimination model , 1998, Defense, Security, and Sensing.

[56]  Majid Mirmehdi,et al.  Detection of Defects in Colour Texture Surfaces , 1994, MVA.

[57]  Frédéric Truchetet,et al.  Aerial colour image segmentation by Karhunen-Loeve transform , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[58]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[59]  Aysin Ertüzün,et al.  An efficient method for texture defect detection: sub-band domain co-occurrence matrices , 2000, Image Vis. Comput..

[60]  Petri Vuorimaa,et al.  A Defect Detection Scheme for Web Surface Inspection , 2000, Int. J. Pattern Recognit. Artif. Intell..

[61]  Peng Wang,et al.  Spatial texture analysis: a comparative study , 2002, Object recognition supported by user interaction for service robots.

[62]  Béla Julesz,et al.  Visual Pattern Discrimination , 1962, IRE Trans. Inf. Theory.

[63]  Anil K. Jain,et al.  Texture Analysis , 2018, Handbook of Image Processing and Computer Vision.

[64]  Eduardo J. Bayro-Corrochano Review of automated visual inspection 1983-1993, Part I: conventional approaches , 1993, Other Conferences.

[65]  Josef Kittler,et al.  An integrated system for quality inspection of tiles , 1997 .

[66]  James S. Goddard,et al.  Vision system for on-loom fabric inspection , 1999 .

[67]  Eero P. Simoncelli,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000, International Journal of Computer Vision.

[68]  Paul Scheunders,et al.  Wavelets for texture analysis, an overview , 1997 .

[69]  B. Julesz Textons, the elements of texture perception, and their interactions , 1981, Nature.

[70]  Aysin Ertüzün,et al.  Comparative evaluation of texture analysis algorithms for defect inspection of textile products , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[71]  Paul Wintz,et al.  Instructor's manual for digital image processing , 1987 .

[72]  Kenneth I. Laws,et al.  Rapid Texture Identification , 1980, Optics & Photonics.

[73]  William B. Thompson,et al.  Computer Diagnosis of Pneumoconiosis , 1974, IEEE Trans. Syst. Man Cybern..

[74]  Bela Julesz,et al.  Filters Versus Textons in Human and Machine Texture Discrimination , 1992 .

[75]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .

[76]  Zhi-Hua Zhou,et al.  Editing Training Data for kNN Classifiers with Neural Network Ensemble , 2004, ISNN.

[77]  De Bonet,et al.  Novel statistical multiresolution techniques for image synthesis, discrimination, and recognition , 1997 .

[78]  Hamed Sari-Sarraf,et al.  Impact of intensity edge map on segmentation of noisy range images , 2000, Electronic Imaging.

[79]  Aura Conci,et al.  A system for real-time fabric inspection and industrial decision , 2002, SEKE '02.

[80]  Andrew Zisserman,et al.  Classifying Images of Materials: Achieving Viewpoint and Illumination Independence , 2002, ECCV.

[81]  Andrew Starr,et al.  Surface defect and texture identification in construction materials , 1997 .

[82]  Anil K. Jain,et al.  A Survey of Automated Visual Inspection , 1995, Comput. Vis. Image Underst..

[83]  Chi-Ho Chan,et al.  Fabric defect detection by Fourier analysis , 1999, Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370).

[84]  Jitendra Malik,et al.  Recognizing surfaces using three-dimensional textons , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[85]  Michael Unser,et al.  Texture classification and segmentation using wavelet frames , 1995, IEEE Trans. Image Process..

[86]  Leo Joskowicz,et al.  Segmentation of microcalcification in X-ray mammograms using entropy thresholding , 2002 .

[87]  M. Topi,et al.  Texture classification by multi-predicate local binary pattern operators , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[88]  Nicolai Petkov,et al.  Comparison of texture features based on Gabor filters , 2002, IEEE Trans. Image Process..

[89]  Nelson Morgan,et al.  Statistical Pattern Classification , 1994 .

[90]  Alan C. Bovik,et al.  Analysis of multichannel narrow-band filters for image texture segmentation , 1991, IEEE Trans. Signal Process..

[91]  DeLiang Wang,et al.  Texture classification using spectral histograms , 2003, IEEE Trans. Image Process..

[92]  Ian Burns,et al.  Measuring texture classification algorithms , 1997, Pattern Recognit. Lett..

[93]  Bedrich J. Hosticka,et al.  A comparison of texture feature extraction using adaptive gabor filtering, pyramidal and tree structured wavelet transforms , 1996, Pattern Recognit..

[94]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[95]  Allan Hanbury,et al.  Finding defects in texture using regularity and local orientation , 2002, Pattern Recognit..

[96]  Neill W Campbell,et al.  Using Colour Gabor Texture Features for Scene Understanding , 1999 .

[97]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[98]  Richard Stamp,et al.  Automated inspection of textured ceramic tiles , 2000 .

[99]  Ramon E. Vasquez,et al.  Approaches to color- and texture-based image classification , 2002 .

[100]  A. S. Tolba,et al.  A self-organizing feature map for automated visual inspection of textile products , 1997 .

[101]  Huan Liu,et al.  Chi2: feature selection and discretization of numeric attributes , 1995, Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence.

[102]  Majid Mirmehdi,et al.  Ceramic tile inspection for colour and structural defects , 1995 .

[103]  Michael Egmont-Petersen,et al.  Image processing with neural networks - a review , 2002, Pattern Recognit..

[104]  Majid Mirmehdi,et al.  Experiments on High Resolution Images Towards Outdoor Scene Classification , 2002 .

[105]  Oscar Nestares,et al.  Efficient spatial-domain implementation of a multiscale image representation based on Gabor functions , 1998, J. Electronic Imaging.

[106]  E. R. Davies,et al.  Crucial Issues in the Design of a Real-Time Contaminant Detection System for Food Products , 1995, Real Time Imaging.

[107]  Keith Worden,et al.  STRUCTURAL FAULT DETECTION USING A NOVELTY MEASURE , 1997 .