A Novel Performance Evaluation Methodology for Single-Target Trackers

This paper addresses the problem of single-target tracker performance evaluation. We consider the performance measures, the dataset and the evaluation system to be the most important components of tracker evaluation and propose requirements for each of them. The requirements are the basis of a new evaluation methodology that aims at a simple and easily interpretable tracker comparison. The ranking-based methodology addresses tracker equivalence in terms of statistical significance and practical differences. A fully-annotated dataset with per-frame annotations with several visual attributes is introduced. The diversity of its visual properties is maximized in a novel way by clustering a large number of videos according to their visual attributes. This makes it the most sophistically constructed and annotated dataset to date. A multi-platform evaluation system allowing easy integration of third-party trackers is presented as well. The proposed evaluation methodology was tested on the VOT2014 challenge on the new dataset and 38 trackers, making it the largest benchmark to date. Most of the tested trackers are indeed state-of-the-art since they outperform the standard baselines, resulting in a highly-challenging benchmark. An exhaustive analysis of the dataset from the perspective of tracking difficulty is carried out. To facilitate tracker comparison a new performance visualization technique is proposed.

[1]  T. W. Anderson,et al.  Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes , 1952 .

[2]  Hyeonjoon Moon,et al.  The FERET evaluation methodology for face-recognition algorithms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[3]  Dariu Gavrila,et al.  The Visual Analysis of Human Movement: A Survey , 1999, Comput. Vis. Image Underst..

[4]  David S. Doermann,et al.  Tools and techniques for video performance evaluation , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[5]  Uwe D. Hanebeck,et al.  Template matching using fast normalized cross correlation , 2001, SPIE Defense + Commercial Sensing.

[6]  Thomas B. Moeslund,et al.  A Survey of Computer Vision-Based Human Motion Capture , 2001, Comput. Vis. Image Underst..

[7]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[8]  Christopher O. Jaynes,et al.  An Open Development Environment for Evaluation of Video Surveillance Systems , 2002 .

[9]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[11]  L. Gool,et al.  Color features for tracking non-rigid objects , 2003 .

[12]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Jacques Verly,et al.  The State of the Art in Multiple Object Tracking Under Occlusion in Video Sequences , 2003 .

[14]  M. Kristan,et al.  Entropy Based Measure of Camera Focus , 2004 .

[15]  Tieniu Tan,et al.  A survey on visual surveillance of object motion and behaviors , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[16]  William Cyrus Navidi,et al.  Statistics for Engineers and Scientists , 2004 .

[17]  J.M. Ferryman,et al.  PETS Metrics: On-Line Performance Evaluation Service , 2005, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.

[18]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[19]  Robert T. Collins,et al.  An Open Source Tracking Testbed and Evaluation Web Site , 2005 .

[20]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[21]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[22]  Adrian Hilton,et al.  A survey of advances in vision-based human motion capture and analysis , 2006, Comput. Vis. Image Underst..

[23]  M. Shah,et al.  Object tracking: A survey , 2006, CSUR.

[24]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[25]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[26]  Pascal Fua,et al.  Multicamera People Tracking with a Probabilistic Occupancy Map , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Rainer Stiefelhagen,et al.  Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics , 2008, EURASIP J. Image Video Process..

[28]  Kyoung Mu Lee,et al.  Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive Basin Hopping Monte Carlo sampling , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  C. Scott,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence , 2009 .

[30]  Matej Kristan,et al.  Closed-world tracking of multiple interacting targets for indoor-sports applications , 2009, Comput. Vis. Image Underst..

[31]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[32]  Jing Zhang,et al.  Framework for Performance Evaluation of Face, Text, and Vehicle Detection and Tracking in Video: Data, Metrics, and Protocol , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Junseok Kwon,et al.  Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive Basin Hopping Monte Carlo sampling , 2009, CVPR.

[34]  Serdar Korukoglu,et al.  A software for performance evaluation and comparison of people detection and tracking methods in video processing , 2011, Multimedia Tools and Applications.

[35]  Arnold W. M. Smeulders,et al.  Thirteen Hard Cases in Visual Tracking , 2010, 2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance.

[36]  Bruce A. Draper,et al.  Visual object tracking using adaptive correlation filters , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[37]  Rama Chellappa,et al.  Online Empirical Evaluation of Tracking Algorithms , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Ales Leonardis,et al.  A Two-Stage Dynamic Model for Visual Tracking , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[39]  Alexei A. Efros,et al.  Unbiased look at dataset bias , 2011, CVPR 2011.

[40]  Chunhua Shen,et al.  Real-time visual tracking using compressive sensing , 2011, CVPR 2011.

[41]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Jiri Matas,et al.  Robustifying the Flock of Trackers , 2011 .

[43]  Laura Sevilla-Lara,et al.  Distribution fields for tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[44]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[45]  Jaime S. Cardoso,et al.  Filling the gap in quality assessment of video object tracking , 2012, Image Vis. Comput..

[46]  Fatih Murat Porikli,et al.  Changedetection.net: A new change detection benchmark dataset , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[47]  Andrea Cavallaro,et al.  Adaptive Online Performance Evaluation of Video Trackers , 2012, IEEE Transactions on Image Processing.

[48]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[49]  Andrea Cavallaro,et al.  Accepted for Publication in Ieee Transactions on Image Processing Adaptive Appearance Modeling for Video Tracking: Survey and Evaluation , 2022 .

[50]  Jin Young Choi,et al.  Visual tracking with dual modeling , 2012, IVCNZ '12.

[51]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[52]  Zhongfei Zhang,et al.  A survey of appearance models in visual object tracking , 2013, ACM Trans. Intell. Syst. Technol..

[53]  Stefan Duffner,et al.  PixelTrack: A Fast Adaptive Algorithm for Tracking Non-rigid Objects , 2013, ICCV.

[54]  Michael Felsberg,et al.  The Visual Object Tracking VOT2013 Challenge Results , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[55]  Alfredo Petrosino,et al.  MATRIOSKA: A Multi-level Approach to Fast Tracking by Learning , 2013, ICIAP.

[56]  Haibin Ling,et al.  Finding the Best from the Second Bests - Inhibiting Subjective Bias in Evaluation of Visual Tracking Algorithms , 2013, 2013 IEEE International Conference on Computer Vision.

[57]  Jiri Matas,et al.  Long-Term Tracking through Failure Cases , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[58]  Michael Felsberg,et al.  Enhanced Distribution Field Tracking Using Channel Representations , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[59]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[60]  Matej Kristan,et al.  Visual Object Tracking Challenge (VOT2013) Evaluation Kit , 2013 .

[61]  Ales Leonardis,et al.  Robust Visual Tracking Using an Adaptive Coupled-Layer Visual Model , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  Andrea Cavallaro,et al.  A Protocol for Evaluating Video Trackers Under Real-World Conditions , 2013, IEEE Transactions on Image Processing.

[63]  Jianke Zhu,et al.  A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration , 2014, ECCV Workshops.

[64]  Michael Felsberg,et al.  Accurate Scale Estimation for Robust Visual Tracking , 2014, BMVC.

[65]  Jiri Matas,et al.  Robust scale-adaptive mean-shift for tracking , 2013, Pattern Recognition Letters.

[66]  Ales Leonardis,et al.  Is my new tracker really better than yours? , 2014, IEEE Winter Conference on Applications of Computer Vision.

[67]  Jiri Matas,et al.  The VOT2013 challenge: overview and additional results , 2014 .

[68]  Luc Van Gool,et al.  The Pascal Visual Object Classes Challenge: A Retrospective , 2014, International Journal of Computer Vision.

[69]  Nuno Vasconcelos,et al.  Robust Deformable and Occluded Object Tracking With Dynamic Graph , 2014, IEEE Transactions on Image Processing.

[70]  Michael Felsberg,et al.  Weighted Update and Comparison for Channel-Based Distribution Field Tracking , 2014, ECCV Workshops.

[71]  Roman P. Pflugfelder,et al.  Consensus-based matching and tracking of keypoints for object tracking , 2014, IEEE Winter Conference on Applications of Computer Vision.

[72]  Seunghoon Hong,et al.  Online Graph-Based Tracking , 2014, ECCV.

[73]  Alfredo Petrosino,et al.  Clustering Local Motion Estimates for Robust and Efficient Object Tracking , 2014, ECCV Workshops.

[74]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[75]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[76]  Christophe Garcia,et al.  Exploiting Contextual Motion Cues for Visual Object Tracking , 2014, ECCV Workshops.

[77]  Michael Felsberg,et al.  The Visual Object Tracking VOT2015 Challenge Results , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[78]  Stefan Roth,et al.  MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking , 2015, ArXiv.

[79]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[80]  Vibhav Vineet,et al.  Struck: Structured Output Tracking with Kernels , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[81]  Ales Leonardis,et al.  Visual Object Tracking Performance Measures Revisited , 2015, IEEE Transactions on Image Processing.

[82]  Shuicheng Yan,et al.  NUS-PRO: A New Visual Tracking Challenge , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[83]  Rustam,et al.  The Visual Object Tracking VOT 2013 challenge results , 2018 .