Transonic Unsteady Aerodynamics of the F/A-18E at Conditions Promoting Abrupt Wing Stall (Invited)

A transonic wind tunnel test of an 8% F/A-18E model was conducted in the NASA Langley Research Center (LaRC) 16-Foot Transonic Tunnel (16-Ft TT) to investigate the Abrupt Wing Stall (AWS) characteristics of this aircraft. During this test, both steady and unsteady measurements of balance loads, wing surface pressures, wing root bending moments, and outer wing accelerations were performed. The test was conducted with a wide range of model configurations and test conditions in an attempt to reproduce behavior indicative of the AWS phenomenon experienced on full-scale aircraft during flight tests. This paper focuses on the analysis of the unsteady data acquired during this test. Though the test apparatus was designed to be effectively rigid, model motions due to sting and balance flexibility were observed during the testing, particularly when the model was operating in the AWS flight regime. Correlation between observed aerodynamic frequencies and model structural frequencies are analyzed and presented. Significant shock motion and separated flow is observed as the aircraft pitches through the AWS region. A shock tracking strategy has been formulated to observe this phenomenon. Using this technique, the range of shock motion is readily determined as the aircraft encounters AWS conditions. Spectral analysis of the shock motion shows the frequencies at which the shock oscillates in the AWS region, and probability density function analysis of the shock location shows the propensity of the shock to take on a bi-stable and even tri-stable character in the AWS flight regime.