Edge Illumination and Imaging of Extended Reflectors

We use the singular value decomposition of the array response matrix, frequency by frequency, to image selectively the edges of extended reflectors in a homogeneous medium. We show with numerical simulations in an ultrasound regime, and analytically in the Fraunhofer diffraction regime, that information about the edges is contained in the singular vectors for singular values that are intermediate between the large ones and zero. These transition singular vectors beamform selectively from the array onto the edges of the reflector cross-section facing the array, so that these edges are enhanced in imaging with travel-time migration. Moreover, the illumination with the transition singular vectors is done from the sources at the edges of the array. The theoretical analysis in the Fraunhofer regime shows that the singular values transition to zero at the index $N^\star(\om) = |{\cal A}||{\cal B}|/(\lambda L)^2 $. Here $|{\cal A}|$ and $|{\cal B}|$ are the areas of the array and the reflector cross-section, respectively, $\omega$ is the frequency, $\lambda$ is the wavelength, and $L$ is the range. Since $(\lambda L)^2/|{\cal A}|$ is the area of the focal spot size at range $L$, we see that $N^\star(\om)$ is the number of focal spots contained in the reflector cross-section. The ultrasound simulations are in an extended Fraunhofer regime. The simulation results are, however, qualitatively similar to those obtained theoretically in the Fraunhofer regime. The numerical simulations indicate, in addition, that the subspaces spanned by the transition singular vectors are robust with respect to additive noise when the array has a large number of elements.

[1]  Harold Widom,et al.  On a Class of Integral Operators with Discontinuous Symbol , 1982 .

[2]  Houssem Haddar,et al.  The Convex Back-Scattering Support , 2005, SIAM J. Appl. Math..

[3]  D. Slepian Some comments on Fourier analysis, uncertainty and modeling , 1983 .

[4]  A. Kirsch,et al.  A simple method for solving inverse scattering problems in the resonance region , 1996 .

[5]  René Marklein,et al.  Recent Applications and Advances of Numerical Modeling and Wavefield Inversion in Nondestructive Testing , 2005 .

[6]  O. Dorn,et al.  Level set methods for inverse scattering , 2006 .

[7]  G. Szegő,et al.  On the Eigen-Values of Certain Hermitian Forms , 1953 .

[8]  D. Colton,et al.  The linear sampling method in inverse electromagnetic scattering theory , 2003 .

[9]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[10]  Gilbert G. Walter,et al.  Prolate Spheroidal Wave Functions and Wavelets , 2006 .

[11]  Steven Kusiak,et al.  The Convex Scattering Support in a Background Medium , 2005, SIAM J. Math. Anal..

[12]  M. Born Principles of Optics : Electromagnetic theory of propagation , 1970 .

[13]  Steven Kusiak,et al.  The scattering support , 2003 .

[14]  Jack K. Cohen,et al.  Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion , 2001 .

[15]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[16]  J. F. Clearbout Imaging the Earth's interior. , 1985 .

[17]  J L Thomas,et al.  Optimal focusing by spatio-temporal inverse filter. I. Basic principles. , 2001, The Journal of the Acoustical Society of America.

[18]  Lin,et al.  Quantitative imaging using a time-domain eigenfunction method , 2000, The Journal of the Acoustical Society of America.

[19]  N Jeremy Kasdin,et al.  Optimal one-dimensional apodizations and shaped pupils for planet finding coronagraphy. , 2005, Applied optics.

[20]  Oscar P. Bruno,et al.  A fast, higher-order solver for scattering by penetrable bodies in three dimensions , 2005 .

[21]  Harold Widom,et al.  A THEOREM ON TRANSLATION KERNELS IN n DIMENSIONS( , 1960 .

[22]  Max Born,et al.  Principles of optics - electromagnetic theory of propagation, interference and diffraction of light (7. ed.) , 1999 .

[23]  F. Santosa A Level-set Approach Inverse Problems Involving Obstacles , 1995 .

[24]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[25]  Bojan B. Guzina,et al.  Topological derivative for the inverse scattering of elastic waves , 2004 .

[26]  Peter Monk,et al.  Recent Developments in Inverse Acoustic Scattering Theory , 2000, SIAM Rev..

[27]  D. Slepian,et al.  On bandwidth , 1976, Proceedings of the IEEE.

[28]  H. Pollak,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — III: The dimension of the space of essentially time- and band-limited signals , 1962 .

[29]  H. Landau,et al.  On Szegö’s eingenvalue distribution theorem and non-Hermitian kernels , 1975 .

[30]  James G. Berryman,et al.  Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion. Interdisciplinary Applied Mathematics, Vol 13 , 2001 .

[31]  Mathias Fink,et al.  Eigenmodes of the time reversal operator: a solution to selective focusing in multiple-target media , 1994 .

[32]  G. Papanicolaou,et al.  Imaging and time reversal in random media , 2001 .

[33]  Gene H. Golub,et al.  Matrix computations , 1983 .

[34]  Liliana Borcea,et al.  Optimal illumination and wave form design for imaging in random media. , 2007, The Journal of the Acoustical Society of America.

[35]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[36]  B. Borden Mathematical problems in radar inverse scattering , 2002 .

[37]  L. Trefethen Spectra and pseudospectra , 2005 .

[38]  S. Geman A Limit Theorem for the Norm of Random Matrices , 1980 .

[39]  Y. Mukaigawa,et al.  Large Deviations Estimates for Some Non-local Equations I. Fast Decaying Kernels and Explicit Bounds , 2022 .

[40]  Harold Widom,et al.  On a class of integral operators on a half-space with discontinuous symbol , 1990 .

[41]  Mathias Fink,et al.  Characterization of extended objects with the D.O.R.T. method , 1996, 1996 IEEE Ultrasonics Symposium. Proceedings.

[42]  D. Slepian Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: Extensions to many dimensions; generalized prolate spheroidal functions , 1964 .

[43]  Harold Widom Asymptotic inversion of convolution operators , 1974 .

[44]  Dimitri Gioev Szegö limit theorem for operators with discontinuous symbols and applications to entanglement entropy , 2006 .

[45]  L. Trefethen,et al.  Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .

[46]  Biondo L. Biondi,et al.  3D Seismic Imaging , 2006 .

[47]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[48]  E. C. OBI Eigenvalue Distribution of Time and Frequency Limiting , 2007 .

[49]  P. Lacomme,et al.  Synthetic Aperture Radar , 2001 .

[50]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[51]  Jon F. Claerbout,et al.  DOWNWARD CONTINUATION OF MOVEOUT‐CORRECTED SEISMOGRAMS , 1972 .

[52]  John C. Curlander,et al.  Synthetic Aperture Radar: Systems and Signal Processing , 1991 .

[53]  D. Slepian Analytic Solution of Two Apodization Problems , 1965 .

[54]  T. D. Mast,et al.  Focusing and imaging using eigenfunctions of the scattering operator. , 1997, The Journal of the Acoustical Society of America.

[55]  G. Papanicolaou,et al.  Optimal waveform design for array imaging , 2007 .

[56]  E. M. Hyde,et al.  Fast, High-Order Methods for Scattering by Inhomogeneous Media , 2003 .

[57]  J L Thomas,et al.  Time reversal and the inverse filter. , 2000, The Journal of the Acoustical Society of America.