Fixed-Background EM Algorithm for Semi-Supervised Anomaly Detection
暂无分享,去创建一个
Tapani Raiko | Tommi Vatanen | Eric Malmi | T. Aaltonen | Yoshikazu Nagai | Mikael Kuusela | T. Vatanen | T. Raiko | Y. Nagai | Mikael Kuusela | T. Aaltonen | Eric Malmi | Y. Nagai
[1] M. Kenward,et al. An Introduction to the Bootstrap , 2007 .
[2] Douglas M. Hawkins. Identification of Outliers , 1980, Monographs on Applied Probability and Statistics.
[3] Sameer Singh,et al. Novelty detection: a review - part 2: : neural network based approaches , 2003, Signal Process..
[4] Geoffrey J. McLachlan,et al. Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.
[5] Ralph B. D'Agostino,et al. Goodness-of-Fit-Techniques , 2020 .
[6] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[7] Eleazar Eskin,et al. A GEOMETRIC FRAMEWORK FOR UNSUPERVISED ANOMALY DETECTION: DETECTING INTRUSIONS IN UNLABELED DATA , 2002 .
[8] VARUN CHANDOLA,et al. Anomaly detection: A survey , 2009, CSUR.
[9] M. Kendall. Theoretical Statistics , 1956, Nature.
[10] Bernhard Schölkopf,et al. Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.
[11] Stephan R. Sain,et al. Outlier detection from a mixture distribution when training data are unlabeled , 1999, Bulletin of the Seismological Society of America.
[12] Gunnar Rätsch,et al. Constructing Boosting Algorithms from SVMs: An Application to One-Class Classification , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[13] Eleazar Eskin,et al. Anomaly Detection over Noisy Data using Learned Probability Distributions , 2000, ICML.
[14] Stephan R. Sain,et al. A New Test for Outlier Detection from a Multivariate Mixture Distribution , 1997 .
[15] Sameer Singh,et al. Novelty detection: a review - part 1: statistical approaches , 2003, Signal Process..
[16] Deepak K. Agarwal,et al. An empirical Bayes approach to detect anomalies in dynamic multidimensional arrays , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).
[17] R. F.,et al. Mathematical Statistics , 1944, Nature.
[18] Massimo Piccardi,et al. Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).
[19] Geoffrey J. McLachlan,et al. Mixture models : inference and applications to clustering , 1989 .
[20] Padhraic Smyth,et al. Model selection for probabilistic clustering using cross-validated likelihood , 2000, Stat. Comput..
[21] Hongxing He,et al. Outlier Detection Using Replicator Neural Networks , 2002, DaWaK.
[22] Martin Lauer,et al. A Mixture Approach to Novelty Detection Using Training Data with Outliers , 2001, ECML.