Isogeometric approach to the dynamics of the catenary exposed to large displacements

The paper presents the isogeometric and the Lagrangian approach to the deformable catenary dynamics undergoing large displacements. The benchmark examples are solved and compared with the finite element approach, solutions from independent sources, and analytical solution where available. The sensitivity to discretization and model parameters is demonstrated in selected cases. The isogeometric approach to the catenary dynamics is proved to be efficient and reliable.

[1]  Leopoldo Greco,et al.  A procedure for the static analysis of cable structures following elastic catenary theory , 2014 .

[2]  A. M. Goulois,et al.  Analysis of cable structures , 1979 .

[3]  Yeong-Bin Yang,et al.  GEOMETRIC NONLINEAR ANALYSIS OF CABLE STRUCTURES WITH A TWO-NODE CABLE ELEMENT BY GENERALIZED DISPLACEMENT CONTROL METHOD , 2007 .

[4]  Jaehong Lee,et al.  Isogeometric cable elements based on B-spline curves , 2017 .

[5]  Keigo Harada,et al.  Self-equilibrium Analysis of Cable Structures based on Isogeometric Analysis , 2014 .

[6]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[7]  Giancarlo Sangalli,et al.  IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .

[8]  Darryl H. Yong Strings, Chains, and Ropes , 2006, SIAM Rev..

[9]  Nam-Il Kim,et al.  Free Vibration Analysis of Cable Structures Using Isogeometric Approach , 2017 .

[10]  Seung-Eock Kim,et al.  Nonlinear static and dynamic analysis of cable structures , 2011 .

[11]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[12]  Peter Wriggers,et al.  A large deformation frictional contact formulation using NURBS‐based isogeometric analysis , 2011 .

[13]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[14]  H. Ozdemir,et al.  A finite element approach for cable problems , 1979 .

[15]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[16]  K. Bathe Finite Element Procedures , 1995 .

[17]  Yuri Bazilevs,et al.  Isogeometric rotation-free bending-stabilized cables: Statics, dynamics, bending strips and coupling with shells , 2013 .

[18]  Giuseppe Ricciardi,et al.  Statics of elastic cables under 3D point forces , 2011 .

[19]  K. Bathe,et al.  FINITE ELEMENT FORMULATIONS FOR LARGE DEFORMATION DYNAMIC ANALYSIS , 1975 .

[20]  Laurent Grisoni,et al.  Geometrically exact dynamic splines , 2008, Comput. Aided Des..

[21]  A. Carnicero,et al.  An approach based on the catenary equation to deal with static analysis of three dimensional cable structures , 2009 .

[22]  Y. J. Wu,et al.  Formulation and application of multi-node sliding cable element for the analysis of Suspen-Dome structures , 2010 .

[23]  Flavio Stochino,et al.  A simplified model for railway catenary wire dynamics , 2017 .

[24]  H. B. Jayaraman,et al.  A curved element for the analysis of cable structures , 1981 .

[25]  P. Guisset,et al.  Cable network analysis by a nonlinear programming technique , 1988 .

[26]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[27]  K. Bathe Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme , 2007 .