Modeling Anomalous Hysteresis in Perovskite Solar Cells.

Organic-inorganic lead halide perovskites are distinct from most other semiconductors because they exhibit characteristics of both electronic and ionic motion. Accurate understanding of the optoelectronic impact of such properties is important to fully optimize devices and be aware of any limitations of perovskite solar cells and broader optoelectronic devices. Here we use a numerical drift-diffusion model to describe device operation of perovskite solar cells. To achieve hysteresis in the modeled current-voltage characteristics, we must include both ion migration and electronic charge traps, serving as recombination centers. Trapped electronic charges recombine with oppositely charged free electronic carriers, of which the density depends on the bias-dependent ion distribution in the perovskite. Our results therefore show that reduction of either the density of mobile ionic species or carrier trapping at the perovskite interface will remove the adverse hysteresis in perovskite solar cells. This gives a clear target for ongoing research effort and unifies previously conflicting experimental observations and theories.

[1]  Xing Zhang,et al.  Hysteretic Behavior upon Light Soaking in Perovskite Solar Cells Prepared via Modified Vapor-Assisted Solution Process. , 2015, ACS applied materials & interfaces.

[2]  Karl Leo,et al.  Influence of Hole‐Transport Layers and Donor Materials on Open‐Circuit Voltage and Shape of I–V Curves of Organic Solar Cells , 2011 .

[3]  T. Minemoto,et al.  Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells , 2014 .

[4]  A. Winnacker,et al.  Dynamic Doping in Planar Ionic Transition Metal Complex‐Based Light‐Emitting Electrochemical Cells , 2013 .

[5]  Elvira Fortunato,et al.  TiO2/Cu2O all-oxide heterojunction solar cells produced by spray pyrolysis , 2015 .

[6]  P. Blom,et al.  Trap-assisted recombination in disordered organic semiconductors. , 2011, Physical review letters.

[7]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[8]  Paul L Houston,et al.  Solid-state electroluminescent devices based on transition metal complexes. , 2003, Chemical communications.

[9]  Shi-Joon Sung,et al.  Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of Li-treated TiO2 electrode , 2015 .

[10]  Teruya Ishihara,et al.  Exciton Features in 0-, 2-, and 3-Dimensional Networks of [PbI6]4- Octahedra , 1994 .

[11]  Takuya Masuda,et al.  Hysteresis-free and highly stable perovskite solar cells produced via a chlorine-mediated interdiffusion method , 2015 .

[12]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[13]  Giles Richardson,et al.  A Model for the Operation of Perovskite Based Hybrid Solar Cells: Formulation, Analysis, and Comparison to Experiment , 2014, SIAM J. Appl. Math..

[14]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[15]  Heng Li,et al.  Hysteresis Analysis Based on the Ferroelectric Effect in Hybrid Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[16]  Jin Young Kim,et al.  Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells , 2015, Nature Communications.

[17]  Nakita K. Noel,et al.  Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. , 2014, ACS nano.

[18]  Nam-Gyu Park,et al.  Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. , 2014, The journal of physical chemistry letters.

[19]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[20]  A J Heeger,et al.  Polymer Light-Emitting Electrochemical Cells , 1995, Science.

[21]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[22]  Tsutomu Miyasaka,et al.  The Interface between FTO and the TiO2 Compact Layer Can Be One of the Origins to Hysteresis in Planar Heterojunction Perovskite Solar Cells. , 2015, ACS applied materials & interfaces.

[23]  James Kirkpatrick,et al.  Factors limiting the efficiency of molecular photovoltaic devices , 2004 .

[24]  R. Janssen,et al.  A unifying model for the operation of light-emitting electrochemical cells. , 2010, Journal of the American Chemical Society.

[25]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[26]  Yasuhiro Yamada,et al.  Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. , 2014, Journal of the American Chemical Society.

[27]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[28]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[29]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[30]  Oleksandr Voznyy,et al.  Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes , 2015, Nature Communications.

[31]  M. Kemerink,et al.  Salt Concentration Effects in Planar Light‐Emitting Electrochemical Cells , 2011 .

[32]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[33]  van S Stephan Reenen,et al.  Doping dynamics in light-emitting electrochemical cells , 2011 .

[34]  Tomas Leijtens,et al.  Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. , 2014, ACS nano.

[35]  Aron Walsh,et al.  Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells , 2014, 1405.5810.

[36]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[37]  M. Kemerink,et al.  Fundamental Tradeoff between Emission Intensity and Efficiency in Light‐Emitting Electrochemical Cells , 2015 .

[38]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[39]  Mohammad Khaja Nazeeruddin,et al.  Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .