Fractional and Hypersingular Operators in Variable Exponent Spaces on Metric Measure Spaces

We prove the continuity of potential type operators and hypersingular operators in variable Lebesgue and Sobolev spaces on a metric measure space (Χ, d, µ). Two variants of such operators are considered, according to the regularity admitted on the measure µ.

[1]  D. Edmunds,et al.  Potential-Type Operators in $L^{p(x)}$ Spaces , 2002 .

[2]  Y. Mizuta,et al.  Sobolev embeddings for variable exponent riesz potentials on metric spaces , 2006 .

[3]  Dun Zhao,et al.  On the Spaces L and W , 2001 .

[4]  A GENERAL APPROACH TO WEIGHTED BOUNDEDNESS OF OPERATORS OF HARMONIC ANALYSIS IN VARIABLE EXPONENT , 2008 .

[5]  V. Kokilashvili,et al.  On Some Weighted Inequalities for Fractional Integrals on Nonhomogeneous Spaces , 2005 .

[6]  P. Hästö,et al.  Variable exponent Sobolev spaces on metric measure spaces , 2006 .

[7]  D. Edmunds,et al.  Bounded and Compact Integral Operators , 2002 .

[8]  S. Samko,et al.  The Maximal Operator in Weighted Variable Exponent Spaces on Metric Spaces , 2008 .

[9]  S. Samko,et al.  Boundedness of maximal operators and potential operators on Carleson curves in Lebesgue spaces with variable exponent , 2008 .

[10]  J. Heinonen Lectures on Analysis on Metric Spaces , 2000 .

[11]  S. Samko,et al.  On Sobolev Theorem for Riesz-Type Potentials in Lebesgue Spaces with Variable Exponent , 2003 .

[12]  S. Samko,et al.  Operators of harmonic analysis in weighted spaces with non-standard growth , 2008, 0805.2025.

[13]  Pekka Koskela,et al.  Sobolev met Poincaré , 2000 .

[14]  Y. Mizuta,et al.  Continuity of Sobolev functions of variable exponent on metric spaces , 2004 .

[15]  S. Samko On a progress in the theory of lebesgue spaces with variable exponent: maximal and singular operators , 2005 .

[16]  S. Samko,et al.  Maximal and Potential Operators in Variable Exponent Morrey Spaces , 2008 .

[17]  Boundedness properties of fractional integral operators associated to non-doubling measures , 2002, math/0212323.

[18]  Lars Diening,et al.  Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces Lp(·) and Wk,p(·) , 2004 .

[19]  S. Samko,et al.  Maximal and Fractional Operators in Weighted $L^{p(x)}$ Spaces , 2004 .

[20]  O. Martio,et al.  Hardy’s inequalities for Sobolev functions , 1997 .

[21]  P. Hästö,et al.  Variable Exponent Lebesgue Spaces on Metric Spaces: The Hardy-Littlewood Maximal Operator , 2005 .

[22]  D. Cruz-Uribe,et al.  THE BOUNDEDNESS OF CLASSICAL OPERATORS ON VARIABLE L p SPACES , 2006 .

[23]  S. Samko,et al.  Pointwise Inequalities in Variable Sobolev Spaces and Applications , 2007 .

[24]  C. Segovia,et al.  On fractional differentiation and integration on spaces of homogeneous type , 1996 .

[25]  Stefan Samko,et al.  Fractional integration and differentiation of variable order , 1995 .

[26]  S. Samko,et al.  Embeddings of variable Hajłasz-Sobolev spaces into Hölder spaces of variable order ✩ , 2009 .

[27]  B. Bojarski,et al.  Pointwise inequalities for Sobolev functions and some applications , 1993 .

[28]  D. Edmunds,et al.  Fractional Integrals on Measure Spaces , 2002 .

[29]  O. Martio,et al.  Traces of Sobolev Functions on Fractal Type Sets and Characterization of Extension Domains , 1997 .

[30]  J. Kinnunen,et al.  Hölder quasicontinuity of Sobolev functions on metric spaces , 1998 .

[31]  Jiří Rákosník,et al.  On spaces $L^{p(x)}$ and $W^{k, p(x)}$ , 1991 .

[32]  Ronald R. Coifman,et al.  Analyse harmonique non-commutative sur certains espaces homogènes : étude de certaines intégrales singulières , 1971 .

[33]  P. Hästö,et al.  Sobolev embeddings in metric measure spaces with variable dimension , 2006 .

[34]  S. Samko,et al.  THE MAXIMAL OPERATOR IN WEIGHTED VARIABLE SPACES ON METRIC MEASURE SPACES , 2007 .

[35]  Bertram Ross,et al.  Fractional integration operator of variable order in the holder spaces Hλ(x) , 1995 .

[36]  S. Samko Hypersingular Integrals and Their Applications , 2001 .

[37]  V. Kokilashvili,et al.  Weighted criteria for generalized fractional maximal functions and potentials in Lebesgue spaces with variable exponent , 2007 .

[38]  S. Samko Convolution type operators in lp (x) , 1998 .

[39]  S. Samko,et al.  The maximal operator in weighted variable spaces Lp( , 2007 .

[40]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[41]  Ronald R. Coifman,et al.  Analyse Hamonique Non-Commutative sur Certains Espaces Homogenes , 1971 .

[42]  Piotr Hajłasz,et al.  @ 1996 Kluwer Academic Publishers. Printed in the Netherlands. Sobolev Spaces on an Arbitrary Metric Space , 1994 .

[43]  M. Krbec,et al.  Weight Theory for Integral Transforms on Spaces of Homogeneous Type , 1997 .

[44]  E. Nakai The Campanato, Morrey and Hlder spaces on spaces of homogeneous type , 2006 .

[45]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[46]  S. Samko,et al.  Characterization of Riesz and Bessel potentials on variable Lebesgue spaces , 2006 .

[47]  G. Weiss,et al.  Extensions of Hardy spaces and their use in analysis , 1977 .

[48]  A. Gatto On fractional calculus associated to doubling and non-doubling measures , 2006 .

[49]  Y. Mizuta,et al.  Sobolev's inequality for Riesz potentials with variable exponent satisfying a log-Hölder condition at infinity , 2005 .