Cisapride-Induced Transmural Dispersion of Repolarization and Torsade de Pointes in the Canine Left Ventricular Wedge Preparation During Epicardial Stimulation

Background—Cisapride, a gastrointestinal prokinetic agent, was recently withdrawn from the market because of its propensity to induce torsade de pointes (TdP) arrhythmias. The present study examines the electrophysiological actions of cisapride in the isolated arterially perfused canine left ventricular wedge preparation. Methods and Results—Transmembrane action potentials from epicardial and M regions and a pseudo-ECG were simultaneously recorded. Cisapride (0.1 to 5 &mgr;mol/L) was added to the coronary perfusate. Cisapride prolonged the QT interval and increased transmural dispersion of repolarization (TDR) at relatively low but not at high concentrations. TdP could be induced with programmed electrical stimulation only at a low concentration of drug (0.2 &mgr;mol/L), when TDR was maximally prolonged. Moreover, TdP could only be induced during epicardial (but not endocardial) activation of the wedge, which was found to augment TDR. At higher concentrations of cisapride, QT was further prolonged, TDR was diminished, and TdP could no longer be induced. Tpeak–Tend interval and Tpeak–Tend area provided reasonable electrocardiographic indices of TDR. Conclusion—Our data (1) demonstrate a biphasic concentration/response relationship for the effect of cisapride to induce long-QT syndrome and TdP, (2) show the value of the left ventricular wedge preparation in identifying drugs that pose an arrhythmic risk, (3) support the hypothesis that risk for development of TdP is related to the increase in TDR rather than to prolongation of the QT interval, and (4) indicate that epicardial activation of the left ventricle, as occurs during biventricular pacing, can facilitate the development of TdP under long-QT conditions.

[1]  Charles Antzelevitch,et al.  Effect of Epicardial or Biventricular Pacing to Prolong QT Interval and Increase Transmural Dispersion of Repolarization: Does Resynchronization Therapy Pose a Risk for Patients Predisposed to Long QT or Torsade de Pointes? , 2003, Circulation.

[2]  C. Antzelevitch,et al.  Cellular mechanisms underlying the long QT syndrome. , 2003, Journal of cardiovascular electrophysiology.

[3]  C. Antzelevitch,et al.  Unique Topographical Distribution of M Cells Underlies Reentrant Mechanism of Torsade de Pointes in the Long-QT Syndrome , 2002, Circulation.

[4]  N. El-Sherif,et al.  Electrophysiological Mechanism of Enhanced Susceptibility of Hypertrophied Heart to Acquired Torsade de Pointes Arrhythmias: Tridimensional Mapping of Activation and Recovery Patterns , 2002, Circulation.

[5]  H. Wellens,et al.  Chronic Amiodarone Evokes No Torsade de Pointes Arrhythmias Despite QT Lengthening in an Animal Model of Acquired Long-QT Syndrome , 2001, Circulation.

[6]  M. Vos,et al.  Electrophysiologic parameters and predisposing factors in the generation of drug-induced Torsade de Pointes arrhythmias. , 2001, Pharmacology & therapeutics.

[7]  C Antzelevitch,et al.  Larger late sodium conductance in M cells contributes to electrical heterogeneity in canine ventricle. , 2001, American journal of physiology. Heart and circulatory physiology.

[8]  A. Camm,et al.  The potential for QT prolongation and pro-arrhythmia by non-anti-arrhythmic drugs: clinical and regulatory implications. Report on a Policy Conference of the European Society of Cardiology. , 2000, Cardiovascular research.

[9]  C Antzelevitch,et al.  I(NaCa) contributes to electrical heterogeneity within the canine ventricle. , 2000, American journal of physiology. Heart and circulatory physiology.

[10]  C. Antzelevitch,et al.  Transmural Heterogeneity of Ventricular Repolarization Under Baseline and Long QT Conditions in the Canine Heart In Vivo: Torsades de Pointes Develops with Halothane but not Pentobarbital Anesthesia , 2000, Journal of cardiovascular electrophysiology.

[11]  CHARLES ANTZELEVITCH,et al.  The M Cell: , 1999, Journal of cardiovascular electrophysiology.

[12]  C. Antzelevitch,et al.  Sodium Pentobarbital Reduces Transmural Dispersion of Repolarization and Prevents Torsades de Pointes in Models of Acquired and Congenital Long QT Syndrome , 1999, Journal of cardiovascular electrophysiology.

[13]  C Antzelevitch,et al.  Cellular basis for the normal T wave and the electrocardiographic manifestations of the long-QT syndrome. , 1998, Circulation.

[14]  C Antzelevitch,et al.  Chronic Amiodarone Reduces Transmural Dispersion of Repolarization in the Canine Heart , 1997, Journal of cardiovascular electrophysiology.

[15]  CharlesAntzelevitch,et al.  Sodium Channel Block With Mexiletine Is Effective in Reducing Dispersion of Repolarization and Preventing Torsade de Pointes in LQT2 and LQT3 Models of the Long-QT Syndrome , 1997 .

[16]  M. Rosen,et al.  Regional differences in electrophysiological properties of epicardium, midmyocardium, and endocardium. In vitro and in vivo correlations. , 1996, Circulation.

[17]  D. Wysowski,et al.  Cisapride and fatal arrhythmia. , 1996, The New England journal of medicine.

[18]  C. Antzelevitch,et al.  Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. , 1995, Circulation research.

[19]  D. Roden,et al.  Suppression of time-dependent outward current in guinea pig ventricular myocytes. Actions of quinidine and amiodarone. , 1991, Circulation research.