Thermo-chemical wear model and worn tool shapes for single-crystal diamond tools cutting steel

Abstract An Arrhenius-type thermochemical wear model proposed by past researchers is evaluated for predicting diamond tool wear when machining low carbon steel. Tool temperature values are determined using finite element modeling. These temperatures are related to tool wear measured after diamond turning tests on a low carbon steel workpiece to determine constants in the Arrhenius-type model. Measured tool wear shows a transition in worn tool shape from low speed (1 mm/s) to high speed (4 m/s) machining tests. Model results show a minimum value of wear per cutting distance occurs at a cutting speed of 2.5 m/s. The model also gives an activation energy between 25.0 kJ/mol and 29.3 kJ/mol. In addition, this model is used to explain experimental results obtained by others researching chemical wear of diamond.

[1]  D. Crompton,et al.  The wear of diamond , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  Paul Mativenga,et al.  Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining , 2006 .

[3]  C. Arcona,et al.  An Empirical Tool Force Model for Precision Machining , 1998 .

[4]  Satoshi Kiyono,et al.  Nanometer edge profile measurement of diamond cutting tools by atomic force microscope with optical alignment sensor , 2006 .

[5]  Tao Sun,et al.  Design criterion for crystal orientation of diamond cutting tool , 2009 .

[6]  H. Yoshioka,et al.  In-process microsensor for ultraprecision machining , 2004 .

[7]  Toshimichi Moriwaki,et al.  Combined Stress, Material Flow and Heat Analysis of Orthogonal Micromachining of Copper , 1993 .

[8]  Takashi Ueda,et al.  The Temperature of a Single Crystal Diamond Tool in Turning , 1998 .

[9]  Akira Kobayashi,et al.  Measuring the Very Small Cutting-Edge Radius for a Diamond Tool Using a New Kind of SEM Having Two Detectors , 1990 .

[10]  Kui Liu,et al.  Nano-precision measurement of diamond tool edge radius for wafer fabrication , 2003 .

[11]  Thomas A. Dow,et al.  Diamond tool wear measurement by electron-beam-induced deposition , 2010 .

[12]  Tao Sun,et al.  Finite element optimization of diamond tool geometry and cutting-process parameters based on surface residual stresses , 2007 .

[13]  R. Komanduri,et al.  Thermal modeling of the metal cutting process — Part III: temperature rise distribution due to the combined effects of shear plane heat source and the tool–chip interface frictional heat source , 2001 .

[14]  J. Wilks,et al.  Tool wear and solid state reactions during machining , 1979 .

[15]  J. Drescher Scanning electron microscopic technique for imaging a diamond tool edge , 1993 .

[16]  J. Wilks,et al.  The wear of diamond tools turning mild steel , 1980 .

[17]  Yingxue Yao,et al.  The Optimum Crystal Plane of Natural Diamond Tool for Precision Machining , 1992 .

[18]  John S. Strenkowski,et al.  Finite element models of orthogonal cutting with application to single point diamond turning , 1988 .

[19]  F. Fang,et al.  Investigations of tool edge radius effect in micromachining : A FEM simulation approach , 2008 .

[20]  J. Wilks,et al.  The resistance of diamond to abrasion , 1959 .

[21]  H. Takeyama,et al.  Basic Investigation of Tool Wear , 1963 .

[22]  Ranga Komanduri,et al.  Thermal modeling of the metal cutting process: Part I — Temperature rise distribution due to shear plane heat source , 2000 .

[23]  R. Komanduri,et al.  Thermal modeling of the metal cutting process — Part II: temperature rise distribution due to frictional heat source at the tool–chip interface , 2001 .

[24]  Howard W. Yoon,et al.  Simultaneous visible and thermal imaging of metals during machining , 2005, SPIE Defense + Commercial Sensing.

[25]  Masahiro Higuchi,et al.  Thermo-Chemical Wear Mechanism of Diamond Tool in Machining of Ferrous Metals , 2004 .

[26]  Eiji Shamoto,et al.  Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration , 1991 .

[27]  C. Evans,et al.  Cryogenic Diamond Turning of Stainless Steel , 1991 .

[28]  Chi Fai Cheung,et al.  Computer simulation of single-point diamond turning using finite element method , 2005 .

[29]  Christopher J. Evans,et al.  Chemical aspects of tool wear in single point diamond turning , 1996 .

[30]  Don A. Lucca,et al.  Effect of Tool Edge Geometry on Energy Dissipation in Ultraprecision Machining , 1993 .

[31]  J. M. Casstevens,et al.  Diamond turning of steel in carbon-saturated atmospheres , 1983 .

[32]  R. Komanduri,et al.  On the diffusion wear of diamond in grinding pure iron , 1976 .

[33]  J. Archard,et al.  The wear of metals under unlubricated conditions , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[34]  Thomas A. Dow,et al.  Diamond tool wear when machining Al6061 and 1215 steel , 2010 .

[35]  T. Kitagawa,et al.  Analytical prediction of cutting tool wear , 1984 .

[36]  J. Jiang,et al.  The effect of sliding speed on wear of diamond-like carbon coatings , 1998 .

[37]  A. Molinari,et al.  Modeling of tool wear by diffusion in metal cutting , 2002 .

[38]  J. F. Archard,et al.  The temperature of rubbing surfaces , 1959 .

[39]  Ekkard Brinksmeier,et al.  Advances in Precision Machining of Steel , 2001 .