Maximum Margin Multiple Instance Clustering With Applications to Image and Text Clustering

In multiple instance learning problems, patterns are often given as bags and each bag consists of some instances. Most of existing research in the area focuses on multiple instance classification and multiple instance regression, while very limited work has been conducted for multiple instance clustering (MIC). This paper formulates a novel framework, maximum margin multiple instance clustering (M3IC), for MIC. However, it is impractical to directly solve the optimization problem of M3IC. Therefore, M3IC is relaxed in this paper to enable an efficient optimization solution with a combination of the constrained concave-convex procedure and the cutting plane method. Furthermore, this paper presents some important properties of the proposed method and discusses the relationship between the proposed method and some other related ones. An extensive set of empirical results are shown to demonstrate the advantages of the proposed method against existing research for both effectiveness and efficiency.

[1]  Fei Wang,et al.  Linear Time Maximum Margin Clustering , 2010, IEEE Transactions on Neural Networks.

[2]  Zhi-Hua Zhou,et al.  Multi-instance clustering with applications to multi-instance prediction , 2009, Applied Intelligence.

[3]  Dale Schuurmans,et al.  Maximum Margin Clustering , 2004, NIPS.

[4]  Thomas G. Dietterich,et al.  Solving the Multiple Instance Problem with Axis-Parallel Rectangles , 1997, Artif. Intell..

[5]  Tomás Lozano-Pérez,et al.  A Framework for Multiple-Instance Learning , 1997, NIPS.

[6]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[7]  Fei Wang,et al.  Efficient Maximum Margin Clustering via Cutting Plane Algorithm , 2008, SDM.

[8]  Fei Wang,et al.  Cuts3vm: a fast semi-supervised svm algorithm , 2008, KDD.

[9]  Thomas Hofmann,et al.  Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..

[10]  Luo Si,et al.  M3IC: Maximum Margin Multiple Instance Clustering , 2009, IJCAI.

[11]  Bernhard Schölkopf,et al.  Learning with kernels , 2001 .

[12]  Peter V. Gehler,et al.  Deterministic Annealing for Multiple-Instance Learning , 2007, AISTATS.

[13]  Thorsten Joachims,et al.  Training linear SVMs in linear time , 2006, KDD '06.

[14]  Thomas Hofmann,et al.  Kernel Methods for Missing Variables , 2005, AISTATS.

[15]  Yixin Chen,et al.  Image Categorization by Learning and Reasoning with Regions , 2004, J. Mach. Learn. Res..

[16]  Jun Wang,et al.  Solving the Multiple-Instance Problem: A Lazy Learning Approach , 2000, ICML.

[17]  James T. Kwok,et al.  Marginalized Multi-Instance Kernels , 2007, IJCAI.

[18]  Graham J. Williams,et al.  Data Mining , 2000, Communications in Computer and Information Science.

[19]  J. E. Kelley,et al.  The Cutting-Plane Method for Solving Convex Programs , 1960 .

[20]  Sally A. Goldman,et al.  MISSL: multiple-instance semi-supervised learning , 2006, ICML.

[21]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[22]  Oded Maron,et al.  Multiple-Instance Learning for Natural Scene Classification , 1998, ICML.

[23]  Yixin Chen,et al.  MILES: Multiple-Instance Learning via Embedded Instance Selection , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  David Page,et al.  Multiple Instance Regression , 2001, ICML.

[25]  J. Borwein,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[26]  Dale Schuurmans,et al.  Unsupervised and Semi-Supervised Multi-Class Support Vector Machines , 2005, AAAI.

[27]  Sally A. Goldman,et al.  Multiple-Instance Learning of Real-Valued Data , 2001, J. Mach. Learn. Res..

[28]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[29]  Hui Zhang,et al.  Localized Content-Based Image Retrieval , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Fei Wang,et al.  Efficient multiclass maximum margin clustering , 2008, ICML '08.

[31]  Ivor W. Tsang,et al.  Maximum Margin Clustering Made Practical , 2009, IEEE Trans. Neural Networks.

[32]  Hui Zhang,et al.  Localized Content-Based Image Retrieval , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Thomas Gärtner,et al.  Multi-Instance Kernels , 2002, ICML.

[34]  Joydeep Ghosh,et al.  Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions , 2002, J. Mach. Learn. Res..

[35]  Razvan C. Bunescu,et al.  Multiple instance learning for sparse positive bags , 2007, ICML '07.

[36]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[37]  Jue Wang,et al.  Recursive Support Vector Machines for Dimensionality Reduction , 2008, IEEE Transactions on Neural Networks.

[38]  Thomas Hofmann,et al.  Support Vector Machines for Multiple-Instance Learning , 2002, NIPS.

[39]  Qi Zhang,et al.  EM-DD: An Improved Multiple-Instance Learning Technique , 2001, NIPS.

[40]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .