ScalarFlow

In this paper, we present ScalarFlow, a first large-scale data set of reconstructions of real-world smoke plumes. We additionally propose a framework for accurate physics-based reconstructions from a small number of video streams. Central components of our algorithm are a novel estimation of unseen inflow regions and an efficient regularization scheme. Our data set includes a large number of complex and natural buoyancy-driven flows. The flows transition to turbulent flows and contain observable scalar transport processes. As such, the ScalarFlow data set is tailored towards computer graphics, vision, and learning applications. The published data set will contain volumetric reconstructions of velocity and density, input image sequences, together with calibration data, code, and instructions how to recreate the commodity hardware capture setup. We further demonstrate one of the many potential application areas: a first perceptual evaluation study, which reveals that the complexity of the captured flows requires a huge simulation resolution for regular solvers in order to recreate at least parts of the natural complexity contained in the captured data.

[1]  Wolfgang Heidrich,et al.  Super-Resolution and Sparse View CT Reconstruction , 2018, ECCV.

[2]  Hujun Bao,et al.  Interactive localized liquid motion editing , 2013, ACM Trans. Graph..

[3]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[4]  Xiangyu Hu,et al.  Perceptual evaluation of liquid simulation methods , 2017, ACM Trans. Graph..

[5]  Eftychios Sifakis,et al.  A parallel multigrid Poisson solver for fluids simulation on large grids , 2010, SCA '10.

[6]  Ronald Fedkiw,et al.  An Unconditionally Stable MacCormack Method , 2008, J. Sci. Comput..

[7]  Ludovic Hoyet,et al.  Evaluating the distinctiveness and attractiveness of human motions on realistic virtual bodies , 2013, ACM Trans. Graph..

[8]  Derek Nowrouzezahrai,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2006) a Controllable, Fast and Stable Basis for Vortex Based Smoke Simulation , 2022 .

[9]  Nils Thürey,et al.  tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow , 2018, ACM Trans. Graph..

[10]  Andrew Selle,et al.  A vortex particle method for smoke, water and explosions , 2005, ACM Trans. Graph..

[11]  Doug L. James,et al.  Wavelet turbulence for fluid simulation , 2008, SIGGRAPH 2008.

[12]  D. Hunter MM algorithms for generalized Bradley-Terry models , 2003 .

[13]  G. Fechner Elemente der Psychophysik , 1998 .

[14]  Ulrich Pinkall,et al.  Filament-based smoke with vortex shedding and variational reconnection , 2010, SIGGRAPH 2010.

[15]  Markus H. Gross,et al.  Deep Fluids: A Generative Network for Parameterized Fluid Simulations , 2018, Comput. Graph. Forum.

[16]  BradleyDerek,et al.  Time-resolved 3d capture of non-stationary gas flows , 2008 .

[17]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[18]  Matthias Teschner,et al.  SPH Fluids in Computer Graphics , 2014, Eurographics.

[19]  V. Avsarkisov,et al.  Turbulent plane Couette flow at moderately high Reynolds number , 2014, Journal of Fluid Mechanics.

[20]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[21]  Yi Li,et al.  A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence , 2008, 0804.1703.

[22]  Ignacio Llamas,et al.  FlowFixer: Using BFECC for Fluid Simulation , 2005, NPH.

[23]  Alan Chalmers,et al.  Selective quality rendering by exploiting human inattentional blindness: looking but not seeing , 2002, VRST '02.

[24]  Hans-Peter Seidel,et al.  Time-resolved 3d capture of non-stationary gas flows , 2008, SIGGRAPH Asia '08.

[25]  George Em Karniadakis,et al.  Hidden Fluid Mechanics: Navier-Stokes Informed Deep Learning from the Passive Scalar Transport , 2018 .

[26]  G. Pistoia,et al.  A new approach to the improvement of Li1+xV3O8 performance in rechargeable lithium batteries , 1995 .

[27]  Cyril Burt GUSTAV THEODOR FECHNER ELEMENTE DER PSYCHOPHYSIK 1860 , 1960 .

[28]  ManochaDinesh,et al.  Efficient Solver for Spacetime Control of Smoke , 2017 .

[29]  Bo Ren,et al.  Fluid directed rigid body control using deep reinforcement learning , 2018, ACM Trans. Graph..

[30]  Bernhard Wieneke,et al.  Tomographic particle image velocimetry , 2006 .

[31]  Ken Museth,et al.  Guiding of smoke animations through variational coupling of simulations at different resolutions , 2009, SCA '09.

[32]  J. Callis,et al.  Luminescent barometry in wind tunnels , 1990 .

[33]  P. Moin,et al.  A dynamic subgrid‐scale model for compressible turbulence and scalar transport , 1991 .

[34]  Wolfgang Heidrich,et al.  From capture to simulation , 2014, ACM Trans. Graph..

[35]  Chenfanfu Jiang,et al.  The material point method for simulating continuum materials , 2016, SIGGRAPH Courses.

[36]  Javier Sánchez Pérez,et al.  Horn-Schunck Optical Flow with a Multi-Scale Strategy , 2013, Image Process. Line.

[37]  Barbara Solenthaler,et al.  Data-driven fluid simulations using regression forests , 2015, ACM Trans. Graph..

[38]  Kiriakos N. Kutulakos,et al.  Photo-Consistent Reconstruction of Semitransparent Scenes by Density-Sheet Decomposition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Marcus A. Magnor,et al.  Fast Image‐Based Modeling of Astronomical Nebulae , 2013, Comput. Graph. Forum.

[40]  Ulrich Pinkall,et al.  Filament-based smoke with vortex shedding and variational reconnection , 2010, ACM Trans. Graph..

[41]  Nobuhide Kasagi,et al.  A New Approach to the Improvement of k-ε Turbulence Model for Wall-Bounded Shear Flows , 1990 .

[42]  Alexey Stomakhin,et al.  A material point method for snow simulation , 2013, ACM Trans. Graph..

[43]  Ronald Fedkiw,et al.  A vortex particle method for smoke, water and explosions , 2005, ACM Trans. Graph..

[44]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[45]  Ramis Örlü,et al.  Assessment of direct numerical simulation data of turbulent boundary layers , 2010, Journal of Fluid Mechanics.

[46]  Wolfgang Heidrich,et al.  Coupled Fluid Density and Motion from Single Views , 2018, Comput. Graph. Forum.

[47]  Xiong Dun,et al.  Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging , 2017, ACM Trans. Graph..

[48]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[49]  Dinesh Manocha,et al.  Efficient Solver for Spacetime Control of Smoke , 2017, ACM Trans. Graph..

[50]  Marcus A. Magnor,et al.  Image-based tomographic reconstruction of flames , 2004, SCA '04.

[51]  Ken Perlin,et al.  Accelerating Eulerian Fluid Simulation With Convolutional Networks , 2016, ICML.

[52]  Marcus A. Magnor,et al.  Adaptive grid optical tomography , 2006, Graph. Model..

[53]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[54]  Diego Gutierrez,et al.  Evaluation of reverse tone mapping through varying exposure conditions , 2009, ACM Trans. Graph..

[55]  Ken-ichi Anjyo,et al.  Fluid volume modeling from sparse multi-view images by appearance transfer , 2015, ACM Trans. Graph..

[56]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[57]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[58]  Chenfanfu Jiang,et al.  Multi-species simulation of porous sand and water mixtures , 2017, ACM Trans. Graph..

[59]  Marcus A. Magnor,et al.  Image-based tomographic reconstruction of flames , 2004, SIGGRAPH '04.

[60]  Wolfgang Heidrich,et al.  An evaluation of optical flow algorithms for background oriented schlieren imaging , 2009 .

[61]  Apostol Natsev,et al.  YouTube-8M: A Large-Scale Video Classification Benchmark , 2016, ArXiv.

[62]  ARNO KNAPITSCH,et al.  Tanks and temples , 2017, ACM Trans. Graph..

[63]  Ignazio Maria Viola,et al.  A separated vortex ring underlies the flight of the dandelion , 2018, Nature.

[64]  J. Gunn,et al.  Computational fluid dynamics modelling in cardiovascular medicine , 2015, Heart.

[65]  Yizhou Yu,et al.  Taming liquids for rapidly changing targets , 2005, SCA '05.

[66]  Nils Thürey,et al.  Data-driven synthesis of smoke flows with CNN-based feature descriptors , 2017, ACM Trans. Graph..

[67]  W. Heidrich,et al.  Space-time tomography for continuously deforming objects , 2018, ACM Trans. Graph..

[68]  Eftychios Sifakis,et al.  SPGrid: a sparse paged grid structure applied to adaptive smoke simulation , 2014, ACM Trans. Graph..

[69]  Theodore Kim,et al.  Example-based turbulence style transfer , 2018, ACM Trans. Graph..

[70]  Huamin Wang,et al.  Physically guided liquid surface modeling from videos , 2009, ACM Trans. Graph..

[71]  Rahul Narain,et al.  An advection-reflection solver for detail-preserving fluid simulation , 2018, ACM Trans. Graph..

[72]  Paul E. Debevec,et al.  Acquisition of time-varying participating media , 2005, ACM Trans. Graph..