The Singular Value Decomposition: Computation and Applications to Robotics

The singular value decomposition has been extensively used for the analysis of the kinematic and dynamic characteristics of robotic manipulators. Due to a reputation for being nu merically expensive to compute, however, it has not been used for real-time applications. This work illustrates a for mulation for the singular value decomposition that takes advantage of the nature of robotics matrix calculations to ob tain a computationally feasible algorithm. Several applica tions, including the control of redundant manipulators and the optimization of dexterity, are discussed. A detailed illus tration of the use of the singular value decomposition to deal with the general problem of singularities is also presented.

[1]  C. Jacobi,et al.  C. G. J. Jacobi's Gesammelte Werke: Über ein leichtes Verfahren, die in der Theorie der Sacularstorungen vorkommenden Gleichungen numerisch aufzulosen , 1846 .

[2]  M. Hestenes Inversion of Matrices by Biorthogonalization and Related Results , 1958 .

[3]  Chandler Davis The rotation of eigenvectors by a perturbation , 1963 .

[4]  Daniel E. Whitney,et al.  Resolved Motion Rate Control of Manipulators and Human Prostheses , 1969 .

[5]  Gene H. Golub,et al.  Algorithm 358: singular value decomposition of a complex matrix [F1, 4, 5] , 1969, CACM.

[6]  Donald W. Marquaridt Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation , 1970 .

[7]  W. Kahan,et al.  The Rotation of Eigenvectors by a Perturbation. III , 1970 .

[8]  G. W. Stewart,et al.  Incorporating origin shifts into the QR algorithm for symmetric tridiagonal matrices , 1970, CACM.

[9]  P. Wedin Perturbation bounds in connection with singular value decomposition , 1972 .

[10]  John C. Nash,et al.  A One-Sided Transformation Method for the Singular Value Decomposition and Algebraic Eigenproblem , 1975, Comput. J..

[11]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[12]  Michael A. Malcolm,et al.  Computer methods for mathematical computations , 1977 .

[13]  A. Liegeois,et al.  Automatic supervisory control of the configuration and behavior of multi-body mechanisms , 1977 .

[14]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[15]  J. Nash Compact Numerical Methods for Computers , 2018 .

[16]  J. Y. S. Luh,et al.  Resolved-acceleration control of mechanical manipulators , 1980 .

[17]  Franklin T. Luk,et al.  Computing the Singular-Value Decomposition on the ILLIAC IV , 1980, TOMS.

[18]  John J. Craig,et al.  Articulated hands: Force control and kinematic issues , 1981 .

[19]  David S. Watkins,et al.  Understanding the $QR$ Algorithm , 1982 .

[20]  Gene H. Golub,et al.  Matrix computations , 1983 .

[21]  Charles A. Klein,et al.  Review of pseudoinverse control for use with kinematically redundant manipulators , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[22]  Tsuneo Yoshikawa,et al.  Analysis and Control of Robot Manipulators with Redundancy , 1983 .

[23]  John M. Hollerbach,et al.  Redundancy resolution of manipulators through torque optimization , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[24]  H. Harry Asada,et al.  Kinematic and static characterization of wrist joints and their optimal design , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[25]  A. A. Maciejewski,et al.  Obstacle Avoidance , 2005 .

[26]  Tsuneo Yoshikawa,et al.  Dynamic Manipulability of Robot Manipulators , 1985 .

[27]  Tsuneo Yoshikawa,et al.  Manipulability of Robotic Mechanisms , 1985 .

[28]  F. Luk Triangular processor array for computing singular values , 1986 .

[29]  Franklin T. Luk,et al.  A new systolic array for the singular value decomposition , 1986 .

[30]  Franklin T. Luk,et al.  A Rotation Method for Computing the QR-Decomposition , 1986 .

[31]  Charles W. Wampler,et al.  Manipulator Inverse Kinematic Solutions Based on Vector Formulations and Damped Least-Squares Methods , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[32]  Yoshihiko Nakamura,et al.  Inverse kinematic solutions with singularity robustness for robot manipulator control , 1986 .

[33]  John Baillieul,et al.  A constraint oriented approach to inverse problems for kinematically redundant manipulators , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[34]  Charles A. Klein,et al.  Dexterity Measures for the Design and Control of Kinematically Redundant Manipulators , 1987 .

[35]  Rajiv V. Dubey,et al.  Redundant robot control for higher flexibility , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[36]  Anthony A. Maciejewski,et al.  The analysis and control of robotic manipulators operating at or near kinematically singular configurations , 1987 .

[37]  T. Yoshikawa,et al.  Task-Priority Based Redundancy Control of Robot Manipulators , 1987 .

[38]  S. Chiu,et al.  Control of redundant manipulators for task compatibility , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[39]  Andrew K. C. Wong,et al.  A singularities avoidance method for the trajectory planning of redundant and nonredundant robot manipulators , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[40]  E. Aboaf,et al.  Living with the singularity of robot wrists , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[41]  Charles W. Wampler,et al.  Some facts concerning the inverse kinematics of redundant manipulators , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[42]  Mitsuji Sampei,et al.  Robot control in the neighborhood of singular points , 1988, IEEE J. Robotics Autom..

[43]  William J. Dally Advanced research in VLSI : proceedings of the sixth MIT Conference , 1990 .

[44]  B. AfeArd CALCULATING THE SINGULAR VALUES AND PSEUDOINVERSE OF A MATRIX , 2022 .

[45]  C. Jacobi Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen*). , 2022 .