Integral points on the elliptic curve Epq: y2 = x3 + (pq − 12) x − 2(pq − 8)
暂无分享,去创建一个
H. Qin | Q. Ji | Teng Cheng
[1] G. Ballew,et al. The Arithmetic of Elliptic Curves , 2020, Elliptic Curves.
[2] Ruiqin Fu,et al. The integral points on elliptic curves y2 = x3 + (36n2 − 9)x − 2(36n2 − 5) , 2013, Czechoslovak Mathematical Journal.
[3] R. Keskin,et al. Integral points on the elliptic curve y2=x3+27x−62 , 2013 .
[4] Wenpeng Zhang,et al. An elliptic curve having large integral points , 2010 .
[5] Roel J. Stroeker,et al. Computing all integer solutions of a genus 1 equation , 2001, Math. Comput..
[6] Liu Ya-zhu. Points on the Elliptic Curve y~2=x~3-21x-90 , 2015 .
[7] A. Meyer,et al. Introduction to Number Theory , 2005 .
[8] P. Ribenboim. An Algorithm to Determine the Points with Integral Coordinates in Certain Elliptic Curves , 1999 .
[9] Roel J. Stroeker,et al. On the Elliptic Logarithm Method for Elliptic Diophantine Equations: Reflections and an Improvement , 1999, Exp. Math..
[10] M. Mignotte,et al. Sur les carrés dans certaines suites de Lucas , 1993 .
[11] Don Zagier,et al. Large Integral Points on Elliptic Curves , 1987 .
[12] A. Baker. The Diophantine Equation y2 = ax3+bx2+cx+d , 1968 .