Molecular genetics and cellular features of TFE3 and TFEB fusion kidney cancers

[1]  U. Surti,et al.  Xp 11 . 2 translocation renal cell carcinoma occurring during pregnancy with a novel translocation involving chromosome 19 : a case report with review of the literature , 2015 .

[2]  M. Ladanyi,et al.  Clinical heterogeneity of Xp11 translocation renal cell carcinoma: impact of fusion subtype, age, and stage , 2014, Modern Pathology.

[3]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of clear cell renal cell carcinoma , 2013, Nature.

[4]  H. Aburatani,et al.  Integrated molecular analysis of clear-cell renal cell carcinoma , 2013, Nature Genetics.

[5]  The Cancer Genome Atlas Research Network COMPREHENSIVE MOLECULAR CHARACTERIZATION OF CLEAR CELL RENAL CELL CARCINOMA , 2013, Nature.

[6]  Ximing J. Yang,et al.  Xp11.2 Translocation Renal Cell Carcinoma With PSF-TFE3 Rearrangement , 2013, Diagnostic molecular pathology : the American journal of surgical pathology, part B.

[7]  N. Grishin,et al.  A Novel Germline Mutation in BAP1 Predisposes to Familial Clear-Cell Renal Cell Carcinoma , 2013, Molecular Cancer Research.

[8]  Daniele Marchioni,et al.  A Single-Institution Experience , 2013 .

[9]  G. Demetri,et al.  Tivantinib (ARQ 197), a selective inhibitor of MET, in patients with microphthalmia transcription factor–associated tumors , 2012, Cancer.

[10]  N. Grishin,et al.  BAP1 loss defines a new class of renal cell carcinoma , 2012, Nature Genetics.

[11]  D. Fisher,et al.  Transcription factor E3, a major regulator of mast cell-mediated allergic response. , 2012, The Journal of allergy and clinical immunology.

[12]  W. Linehan,et al.  Translocation Renal Cell Carcinomas in Adults: A Single-institution Experience , 2012, The American journal of surgical pathology.

[13]  W. Linehan,et al.  448 CHARACTERIZATION OF THE AKT-MTOR PATHWAY IN TFE3-FUSION RENAL CELL CANCERS AND IMPLICATIONS FOR TARGETED THERAPY , 2012 .

[14]  Kazuto Kobayashi,et al.  TFE3 regulates muscle metabolic gene expression, increases glycogen stores, and enhances insulin sensitivity in mice. , 2012, American journal of physiology. Endocrinology and metabolism.

[15]  P. Schirmacher,et al.  Molecular heterogeneity of TFE3 activation in renal cell carcinomas , 2012, Modern Pathology.

[16]  Y. Ishikawa,et al.  Diverse Fusion Patterns and Heterogeneous Clinicopathologic Features of Renal Cell Carcinoma With t(6;11) Translocation , 2012, The American journal of surgical pathology.

[17]  S. Puig,et al.  A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma , 2011, Nature.

[18]  M. Rubin,et al.  Validation of a TFE3 Break-apart FISH Assay for Xp11.2 Translocation Renal Cell Carcinomas , 2011, Diagnostic molecular pathology : the American journal of surgical pathology, part B.

[19]  D. Corey,et al.  Regulation of TFEB and V-ATPases by mTORC1 , 2011, The EMBO journal.

[20]  A. Zlotta,et al.  Altered transcription factor E3 expression in unclassified adult renal cell carcinoma indicates adverse pathological features and poor outcome , 2011, BJU international.

[21]  Andrea Ballabio,et al.  TFEB Links Autophagy to Lysosomal Biogenesis , 2011, Science.

[22]  Xiao-jun Zhou,et al.  Renal Cell Carcinoma in Children and Young Adults: Clinicopathological, Immunohistochemical, and VHL Gene Analysis of 46 Cases With Follow-up , 2011, International journal of surgical pathology.

[23]  Eric S. Lander,et al.  The genomic complexity of primary human prostate cancer , 2010, Nature.

[24]  P. A. Futreal,et al.  Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma , 2010, Nature.

[25]  W. Linehan,et al.  Inactivation of the FLCN Tumor Suppressor Gene Induces TFE3 Transcriptional Activity by Increasing Its Nuclear Localization , 2010, PloS one.

[26]  Xiong-zeng Zhu,et al.  Renal cell carcinoma with t(6;11) translocation: a patient case with a novel Alpha-TFEB fusion point. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[27]  L. Hetterschijt,et al.  The Mitotic Arrest Deficient Protein MAD2B Interacts with the Clathrin Light Chain A during Mitosis , 2010, PloS one.

[28]  P. Tamboli,et al.  Vascular endothelial growth factor‐targeted therapy for the treatment of adult metastatic Xp11.2 translocation renal cell carcinoma , 2010, Cancer.

[29]  M. Ladanyi,et al.  Xp11 Translocation Renal Cell Carcinoma (RCC): Extended Immunohistochemical Profile Emphasizing Novel RCC Markers , 2010, The American journal of surgical pathology.

[30]  Xin Li,et al.  Quantitative Proteomics Discloses MET Expression in Mitochondria as a Direct Target of MET Kinase Inhibitor in Cancer Cells* , 2010, Molecular & Cellular Proteomics.

[31]  Yi-Ling Lin,et al.  Mitf Induction by RANKL Is Critical for Osteoclastogenesis , 2010, Molecular biology of the cell.

[32]  W. Linehan,et al.  The genetic basis of kidney cancer: a metabolic disease , 2010, Nature Reviews Urology.

[33]  W. Linehan,et al.  Molecular diagnosis and therapy of kidney cancer. , 2010, Annual review of medicine.

[34]  P. Edwards Fusion genes and chromosome translocations in the common epithelial cancers , 2009, The Journal of pathology.

[35]  P. Camparo,et al.  Targeted agents in metastatic Xp11 translocation/TFE3 gene fusion renal cell carcinoma (RCC): a report from the Juvenile RCC Network. , 2009, Annals of oncology : official journal of the European Society for Medical Oncology.

[36]  A. Børresen-Dale,et al.  COMPLEX LANDSCAPES OF SOMATIC REARRANGEMENT IN HUMAN BREAST CANCER GENOMES , 2009, Nature.

[37]  Hsuan-Ying Huang,et al.  Melanotic Xp11 Translocation Renal Cancer: A Case With PSF-TFE3 Gene Fusion and Up-regulation of Melanogenetic Transcripts , 2009, The American journal of surgical pathology.

[38]  Mio Tanaka,et al.  Perivascular Epithelioid Cell Tumor With SFPQ/PSF-TFE3 Gene Fusion in a Patient With Advanced Neuroblastoma , 2009, The American journal of surgical pathology.

[39]  W. Pavan,et al.  Frequent mutations in the MITF pathway in melanoma , 2009, Pigment cell & melanoma research.

[40]  Valerio Embrione,et al.  A Gene Network Regulating Lysosomal Biogenesis and Function , 2009, Science.

[41]  C. Gemelli,et al.  TFE3 transcription factor regulates the expression of MAFB during macrophage differentiation. , 2009, Experimental cell research.

[42]  U. Surti,et al.  Xp11.2 translocation renal cell carcinoma occurring during pregnancy with a novel translocation involving chromosome 19: a case report with review of the literature , 2009, Diagnostic pathology.

[43]  Y. Ishikawa,et al.  Adult Xp11 Translocation Renal Cell Carcinoma Diagnosed by Cytogenetics and Immunohistochemistry , 2009, Clinical Cancer Research.

[44]  A. Jung,et al.  Overexpression of cyclin D1, D3, and p21 in an infantile renal carcinoma with Xp11.2 TFE3-gene fusion. , 2008, Pathology, research and practice.

[45]  R. Motzer,et al.  Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial , 2008, The Lancet.

[46]  B. Shehata,et al.  FRASER SYNDROME: A NEW CASE REPORT WITH REVIEW OF THE LITERATURE , 2008, Fetal and pediatric pathology.

[47]  D. Schadendorf,et al.  Microphthalmia-Associated Transcription Factor Gene Amplification in Metastatic Melanoma Is a Prognostic Marker for Patient Survival, But Not a Predictive Marker for Chemosensitivity and Chemotherapy Response , 2007, Clinical Cancer Research.

[48]  M. Ladanyi,et al.  Xp11 Translocation Renal Cell Carcinoma in Adults: Expanded Clinical, Pathologic, and Genetic Spectrum , 2007, The American journal of surgical pathology.

[49]  P. Argani,et al.  Xp11 translocation renal cell carcinoma: delayed but massive and lethal metastases of a chemotherapy-associated secondary malignancy. , 2007, Urology.

[50]  L. Pecciarini,et al.  Characterization of t(6;11)(p21;q12) in a renal‐cell carcinoma of an adult patient , 2007, Genes, chromosomes & cancer.

[51]  M. Ladanyi,et al.  TFE3 fusions activate MET signaling by transcriptional up-regulation, defining another class of tumors as candidates for therapeutic MET inhibition. , 2007, Cancer research.

[52]  Michael C. Ostrowski,et al.  The Expression of Clcn7 and Ostm1 in Osteoclasts Is Coregulated by Microphthalmia Transcription Factor* , 2007, Journal of Biological Chemistry.

[53]  A. Pappo,et al.  Pediatric renal cell carcinoma: clinical, pathologic, and molecular abnormalities associated with the members of the mit transcription factor family. , 2006, American journal of clinical pathology.

[54]  I. Shapira,et al.  Transcription factors TFE3 and TFEB are critical for CD40 ligand expression and thymus-dependent humoral immunity , 2006, Nature Immunology.

[55]  C. Denny,et al.  Oncogenic MITF dysregulation in clear cell sarcoma: defining the MiT family of human cancers. , 2006, Cancer cell.

[56]  R. Bernards,et al.  A Functional Genetic Screen Identifies TFE3 as a Gene That Confers Resistance to the Anti-proliferative Effects of the Retinoblastoma Protein and Transforming Growth Factor-β* , 2006, Journal of Biological Chemistry.

[57]  M. Ladanyi,et al.  Translocation carcinomas of the kidney after chemotherapy in childhood. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[58]  H. Sone,et al.  TFE3 transcriptionally activates hepatic IRS-2, participates in insulin signaling and ameliorates diabetes , 2006, Nature Medicine.

[59]  Tiruneh K. Hailemariam,et al.  Renal Carcinoma-associated Transcription Factors TFE3 and TFEB Are Leukemia Inhibitory Factor-responsive Transcription Activators of E-cadherin* , 2005, Journal of Biological Chemistry.

[60]  M. Ladanyi,et al.  Renal Carcinomas With the t(6;11)(p21;q12): Clinicopathologic Features and Demonstration of the Specific Alpha-TFEB Gene Fusion by Immunohistochemistry, RT-PCR, and DNA PCR , 2005, The American journal of surgical pathology.

[61]  Holger Moch,et al.  Morphologic and Molecular Characterization of Renal Cell Carcinoma in Children and Young Adults , 2004, The American journal of surgical pathology.

[62]  T. Hubbard,et al.  A census of human cancer genes , 2004, Nature Reviews Cancer.

[63]  D. Hernández-Ramírez,et al.  Case report with review of the literature , 2004 .

[64]  Jérôme Couturier,et al.  A novel CLTC-TFE3 gene fusion in pediatric renal adenocarcinoma with t(X;17)(p11.2;q23) , 2003, Oncogene.

[65]  H. Samuels,et al.  PSF-TFE3 oncoprotein in papillary renal cell carcinoma inactivates TFE3 and p53 through cytoplasmic sequestration , 2003, Oncogene.

[66]  E. van den Berg,et al.  Upregulation of the transcription factor TFEB in t(6;11)(p21;q13)-positive renal cell carcinomas due to promoter substitution. , 2003, Human molecular genetics.

[67]  Michael C. Ostrowski,et al.  Microphthalmia Transcription Factor and PU.1 Synergistically Induce the Leukocyte Receptor Osteoclast-associated Receptor Gene Expression* , 2003, Journal of Biological Chemistry.

[68]  Joseph R. Nevins,et al.  Identification of E-Box Factor TFE3 as a Functional Partner for the E2F3 Transcription Factor , 2003, Molecular and Cellular Biology.

[69]  David E Fisher,et al.  Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival , 2003, Oncogene.

[70]  M. Ladanyi,et al.  Cloning of an Alpha-TFEB fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[71]  A. Grinberg,et al.  Both Max and TFE3 Cooperate with Smad Proteins to Bind the Plasminogen Activator Inhibitor-1 Promoter, but They Have Opposite Effects on Transcriptional Activity* 210 , 2003, The Journal of Biological Chemistry.

[72]  T. Khashoggi A single institution experience , 2003 .

[73]  M. Ladanyi,et al.  PRCC-TFE3 Renal Carcinomas: Morphologic, Immunohistochemical, Ultrastructural, and Molecular Analysis of an Entity Associated With the t(X;1)(p11.2;q21) , 2002, The American journal of surgical pathology.

[74]  D. Fisher,et al.  The Identification and Functional Characterization of a Novel Mast Cell Isoform of the Microphthalmia-associated Transcription Factor* , 2002, The Journal of Biological Chemistry.

[75]  Sridhar Ramaswamy,et al.  Bcl2 Regulation by the Melanocyte Master Regulator Mitf Modulates Lineage Survival and Melanoma Cell Viability , 2002, Cell.

[76]  Kazuhiro Takahashi,et al.  Microphthalmia‐associated transcription factor interacts with LEF‐1, a mediator of Wnt signaling , 2002, The EMBO journal.

[77]  N. Copeland,et al.  Mitf and Tfe3, two members of the Mitf-Tfe family of bHLH-Zip transcription factors, have important but functionally redundant roles in osteoclast development , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Mahul B. Amin,et al.  Prognostic Impact of Histologic Subtyping of Adult Renal Epithelial Neoplasms: An Experience of 405 Cases , 2002, The American journal of surgical pathology.

[79]  D. Hume,et al.  The microphthalmia transcription factor (MITF) contains two N‐terminal domains required for transactivation of osteoclast target promoters and rescue of mi mutant osteoclasts , 2002, Journal of leukocyte biology.

[80]  A. V. van Kessel,et al.  Impairment of MAD2B–PRCC interaction in mitotic checkpoint defective t(X;1)-positive renal cell carcinomas , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[81]  K Takahashi,et al.  Microphthalmia-associated transcription factor (MITF): multiplicity in structure, function, and regulation. , 2001, The journal of investigative dermatology. Symposium proceedings.

[82]  D. Fisher,et al.  Linkage of M-CSF signaling to Mitf, TFE3, and the osteoclast defect in Mitf(mi/mi) mice. , 2001, Molecular cell.

[83]  M. Ladanyi,et al.  Primary renal neoplasms with the ASPL-TFE3 gene fusion of alveolar soft part sarcoma: a distinctive tumor entity previously included among renal cell carcinomas of children and adolescents. , 2001, The American journal of pathology.

[84]  D. Fisher,et al.  Linking osteopetrosis and pycnodysostosis: Regulation of cathepsin K expression by the microphthalmia transcription factor family , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[85]  E. Price,et al.  Sensorineural Deafness and Pigmentation Genes Melanocytes and the Mitf Transcriptional Network , 2001, Neuron.

[86]  A. Hartog,et al.  Transformation capacities of the papillary renal cell carcinoma-associated PRCCTFE3 and TFE3PRCC fusion genes , 2001, Oncogene.

[87]  C. Cooper,et al.  PRCC, the commonest TFE3 fusion partner in papillary renal carcinoma is associated with pre-mRNA splicing factors , 2001, Oncogene.

[88]  Alfons Meindl,et al.  The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25 , 2001, Oncogene.

[89]  Michael C. Ostrowski,et al.  The Microphthalmia Transcription Factor Regulates Expression of the Tartrate‐Resistant Acid Phosphatase Gene During Terminal Differentiation of Osteoclasts , 2000, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[90]  P. Abbe,et al.  TFE3, a transcription factor homologous to microphthalmia, is a potential transcriptional activator of tyrosinase and TyrpI genes. , 2000, Molecular endocrinology.

[91]  A. G. Kessel,et al.  Nuclear localization and transactivating capacities of the papillary renal cell carcinoma-associated TFE3 and PRCC (fusion) proteins , 2000, Oncogene.

[92]  H. Lodish,et al.  Specificity in transforming growth factor beta-induced transcription of the plasminogen activator inhibitor-1 gene: interactions of promoter DNA, transcription factor muE3, and Smad proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[93]  B. Erman,et al.  Transcriptional Activation by ETS and Leucine Zipper-Containing Basic Helix-Loop-Helix Proteins , 1999, Molecular and Cellular Biology.

[94]  S. Shibahara,et al.  A big gene linked to small eyes encodes multiple Mitf isoforms: many promoters make light work. , 1998, Pigment cell research.

[95]  H. Lodish,et al.  Synergistic cooperation of TFE3 and smad proteins in TGF-beta-induced transcription of the plasminogen activator inhibitor-1 gene. , 1998, Genes & development.

[96]  Damian Smedley,et al.  Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma , 1997, Oncogene.

[97]  F. Alt,et al.  The absence of the transcription activator TFE3 impairs activation of B cells in vivo , 1997, Molecular and cellular biology.

[98]  Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas , 1997, Nature Genetics.

[99]  M. Tachibana,et al.  Evidence to suggest that expression of MITF induces melanocyte differentiation and haploinsufficiency of MITF causes Waardenburg syndrome type 2A. , 1997, Pigment cell research.

[100]  A. G. Kessel,et al.  Fusion of the transcription factor TFE3 gene to a novel gene, PRCC, in t(X;1)(p11;q21)-positive papillary renal cell carcinomas. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[101]  S Gill,et al.  The t(X;1)(p11.2;q21.2) translocation in papillary renal cell carcinoma fuses a novel gene PRCC to the TFE3 transcription factor gene. , 1996, Human molecular genetics.

[102]  E. van den Berg,et al.  Fine mapping of the 1q21 breakpoint of the papillary renal cell carcinoma-associated (X;1) translocation , 1996, Human Genetics.

[103]  E. Morii,et al.  The recessive phenotype displayed by a dominant negative microphthalmia-associated transcription factor mutant is a result of impaired nucleation potential , 1996, Molecular and cellular biology.

[104]  K. J. Moore Insight into the microphthalmia gene. , 1995, Trends in genetics : TIG.

[105]  V. Tonk,et al.  Renal cell carcinoma with translocation (X;1). Further evidence for a cytogenetically defined subtype. , 1995, Cancer genetics and cytogenetics.

[106]  C. Cooper,et al.  Mapping the X chromosome breakpoint in two papillary renal cell carcinoma cell lines with a t(X;1)(p11.2;q21.2) and the first report of a female case. , 1995, Cytogenetics and cell genetics.

[107]  James A. Vaught,et al.  microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. , 1994, Genes & development.

[108]  A. Ferré-D’Amaré,et al.  Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences , 1994, Nature Genetics.

[109]  Andrew P. Read,et al.  Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene , 1994, Nature Genetics.

[110]  X. Liu,et al.  A gene for Waardenburg Syndrome type 2 maps close to the human homologue of the microphthalmia gene at chromosome 3p12–p14.1 , 1994, Nature Genetics.

[111]  B. de Crombrugghe,et al.  TFEC, a basic helix-loop-helix protein, forms heterodimers with TFE3 and inhibits TFE3-dependent transcription activation , 1993, Molecular and cellular biology.

[112]  Stephen K. Burley,et al.  Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain , 1993, Nature.

[113]  A. Sandberg,et al.  Translocation (X;1) in papillary renal cell carcinoma. A new cytogenetic subtype. , 1993, Cancer genetics and cytogenetics.

[114]  G Corrent,et al.  Metabolic disease , 2000, Dermatologic clinics.

[115]  L. Baert,et al.  Renal cell carcinoma in a child. , 1991, Cancer genetics and cytogenetics.

[116]  K. Calame,et al.  A dominant negative form of transcription activator mTFE3 created by differential splicing. , 1991, Science.

[117]  L. Su,et al.  TFE3: a helix-loop-helix protein that activates transcription through the immunoglobulin enhancer muE3 motif. , 1990, Genes & development.

[118]  J. Oosterhuis,et al.  Cytogenetics of a renal adenocarcinoma in a 2-year-old child. , 1986, Cancer genetics and cytogenetics.

[119]  R. Dadoo,et al.  Renal Cell Carcinoma in a Child , 1974, Clinical pediatrics.