2-D Lagrangian studies of symmetry and stability of laser fusion targets
暂无分享,去创建一个
[1] G. C. Pomraning,et al. A flux-limited diffusion theory , 1981 .
[2] J. Nuckolls,et al. Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications , 1972, Nature.
[3] I. Bernstein,et al. Geometric optics in space− and time−varying plasmas , 1975 .
[4] A. M. Winslow,et al. Multi-group diffusion of energetic charged particles , 1975 .
[5] V. Rozanov,et al. Similarity solution of thermonuclear burn wave with electron and α-conductivities , 1976 .
[6] Stefano Atzeni,et al. ADiffusive model for α-particle energy transport in a laser plasma , 1981 .
[7] K. Koyama,et al. Optical and X-Ray Shadowgraphy of Laser-Heated Cavities , 1986 .
[8] S. Atzeni. A design window for reactor-size, direct-drive laser fusion shell targets , 1984 .
[9] J. Gillis,et al. Methods in Computational Physics , 1964 .
[10] S. Atzeni,et al. Model equation-of-state for any material in conditions relevant to ICF and to stellar interiors , 1986 .
[11] J. Meyer-ter-Vehn,et al. On the penetration of an ablative heat wave into a solid wall , 1984 .
[12] R. D. Richtmyer,et al. Difference methods for initial-value problems , 1959 .
[13] R. Craxton,et al. Hydrodynamics of thermal self‐focusing in laser plasmas , 1984 .
[14] J. Christiansen,et al. A numerical model for laser targets , 1980 .
[15] K. Brueckner,et al. Laser Driven Fusion , 1973 .
[16] Stephen E. Bodner,et al. Critical elements of high gain laser fusion , 1981 .
[17] D. Kershaw. Differencing of the diffusion equation in Lagrangian hydrodynamic codes , 1981 .
[18] L. Spitzer. Physics of fully ionized gases , 1956 .
[19] T. H. Johnson,et al. Inertial confinement fusion: Review and perspective , 1984, Proceedings of the IEEE.
[20] 広 久保田,et al. Principle of Optics , 1960 .
[21] E. Ott. NONLINEAR EVOLUTION OF THE RAYLEIGH--TAYLOR INSTABILITY OF A THIN LAYER. , 1972 .
[22] G. J Pert. Physical Constraints in Numerical Calculations of Diffusion , 1981 .
[23] R. J. Mason,et al. Thermonuclear burn characteristics of compressed deuterium‐tritium microspheres , 1974 .
[24] D. Kershaw. The incomplete Cholesky—conjugate gradient method for the iterative solution of systems of linear equations , 1978 .
[25] Marshall,et al. High-aspect-ratio laser-fusion targets driven by 24-beam uv laser radiation. , 1986, Physical review letters.
[26] Gregory A. Moses,et al. Inertial confinement fusion , 1982 .
[27] Steven A. Orszag,et al. Nonlinear effects of multifrequency hydrodynamic instabilities on ablatively accelerated thin shells , 1982 .
[28] Yabe,et al. Laser implosion of high-aspect-ratio targets produces thermonuclear neutron yields exceeding 1012 by use of shock multiplexing. , 1986, Physical review letters.
[29] G. Pert,et al. Algorithms for the self-consistent generation of magnetic fields in plasmas , 1981 .
[30] S. Atzeni,et al. An ignition criterion for isobarically compressed, inertially confined D-T plasmas , 1981 .
[31] S. Atzeni,et al. Energy gain of D-T targets for inertial confinement fusion , 1983 .