2-D Lagrangian studies of symmetry and stability of laser fusion targets

Abstract The use of 2-D Lagrangian codes for studying the symmetry and the stability of laser fusion targets is critically discussed. Physical models and their finite difference implementation are illustrated, with particular reference to the three-temperature code, DUED. Applications to “model problems” and to full-scale laser target experiments illustrate the potential of the approach.

[1]  G. C. Pomraning,et al.  A flux-limited diffusion theory , 1981 .

[2]  J. Nuckolls,et al.  Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications , 1972, Nature.

[3]  I. Bernstein,et al.  Geometric optics in space− and time−varying plasmas , 1975 .

[4]  A. M. Winslow,et al.  Multi-group diffusion of energetic charged particles , 1975 .

[5]  V. Rozanov,et al.  Similarity solution of thermonuclear burn wave with electron and α-conductivities , 1976 .

[6]  Stefano Atzeni,et al.  ADiffusive model for α-particle energy transport in a laser plasma , 1981 .

[7]  K. Koyama,et al.  Optical and X-Ray Shadowgraphy of Laser-Heated Cavities , 1986 .

[8]  S. Atzeni A design window for reactor-size, direct-drive laser fusion shell targets , 1984 .

[9]  J. Gillis,et al.  Methods in Computational Physics , 1964 .

[10]  S. Atzeni,et al.  Model equation-of-state for any material in conditions relevant to ICF and to stellar interiors , 1986 .

[11]  J. Meyer-ter-Vehn,et al.  On the penetration of an ablative heat wave into a solid wall , 1984 .

[12]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[13]  R. Craxton,et al.  Hydrodynamics of thermal self‐focusing in laser plasmas , 1984 .

[14]  J. Christiansen,et al.  A numerical model for laser targets , 1980 .

[15]  K. Brueckner,et al.  Laser Driven Fusion , 1973 .

[16]  Stephen E. Bodner,et al.  Critical elements of high gain laser fusion , 1981 .

[17]  D. Kershaw Differencing of the diffusion equation in Lagrangian hydrodynamic codes , 1981 .

[18]  L. Spitzer Physics of fully ionized gases , 1956 .

[19]  T. H. Johnson,et al.  Inertial confinement fusion: Review and perspective , 1984, Proceedings of the IEEE.

[20]  広 久保田,et al.  Principle of Optics , 1960 .

[21]  E. Ott NONLINEAR EVOLUTION OF THE RAYLEIGH--TAYLOR INSTABILITY OF A THIN LAYER. , 1972 .

[22]  G. J Pert Physical Constraints in Numerical Calculations of Diffusion , 1981 .

[23]  R. J. Mason,et al.  Thermonuclear burn characteristics of compressed deuterium‐tritium microspheres , 1974 .

[24]  D. Kershaw The incomplete Cholesky—conjugate gradient method for the iterative solution of systems of linear equations , 1978 .

[25]  Marshall,et al.  High-aspect-ratio laser-fusion targets driven by 24-beam uv laser radiation. , 1986, Physical review letters.

[26]  Gregory A. Moses,et al.  Inertial confinement fusion , 1982 .

[27]  Steven A. Orszag,et al.  Nonlinear effects of multifrequency hydrodynamic instabilities on ablatively accelerated thin shells , 1982 .

[28]  Yabe,et al.  Laser implosion of high-aspect-ratio targets produces thermonuclear neutron yields exceeding 1012 by use of shock multiplexing. , 1986, Physical review letters.

[29]  G. Pert,et al.  Algorithms for the self-consistent generation of magnetic fields in plasmas , 1981 .

[30]  S. Atzeni,et al.  An ignition criterion for isobarically compressed, inertially confined D-T plasmas , 1981 .

[31]  S. Atzeni,et al.  Energy gain of D-T targets for inertial confinement fusion , 1983 .