Coherent control over three-dimensional spin polarization for the spin-orbit coupled surface state of Bi 2 Se 3

Interference of spin-up and spin-down eigenstates depicts spin rotation of electrons, which is a fundamental concept of quantum mechanics and presents technological challenges for the electrical spin manipulation. Here, we visualize this coherent spin physics through laser spin- and angle-resolved photoemission spectroscopy on a spin-orbital entangled surface state of a topological insulator. It is revealed that the linearly polarized laser can simultaneously excite spin-up and spin-down states, and these quantum-spin bases are coherently superposed in photoelectron states. The superposition and the resulting spin rotation is manipulated by the direction of the laser field. Moreover, the full observation of the spin rotation displays the phase of the quantum states. This presents a new facet of laser-photoemission technique for investigation of quantum-spin physics, opening new possibilities in the field of quantum spintronic applications.