Multisite stimulation for correction of cardiac asynchrony

Cardiac electrical stimulation as primary or adjunctive treatment of congestive heart failure is entering its second decade of existence. Initial trials of conventional DDD pacing1-5 were followed by bifocal right ventricular stimulation.6 The concept of multisite stimulation for haemodynamic support was introduced in 1994.7 8 Various studies have already reported the benefits of this method,9 10 or are in progress.11 The transition from conventional DDD pacing to multisite stimulation was not fortuitous. Successive “advances” in the design of cardiac pacing systems have aimed at correcting anomalies in the sequence of cardiac chamber activation, as well as in the synchronisation of the various phases of myocardial contraction and relaxation. The phenomenon of asynchrony is a consequence of progressive, global or focal degradation of the myocardium. One can easily visualise interstitial fibrosis gradually replacing areas of normal myocardium, and causing heterogeneous propagation of cardiac electrical activity. Such heterogeneity combines, to various degrees, three consecutive atrioventricular, interventricular, and intraventricular asynchrony levels. Among various analytical and modelling methods, Doppler echocardiography is preferred for its ease of application in day to day practice.12 The oldest concept, that of desynchronised atrioventricular sequential activation, applies only to sinus rhythm. It is the product of a mismatch between end of atrial systole and onset of ventricular systole, sometimes facilitated by a disorder of atrioventricular conduction or QRS prolongation. It may be simply described as an abbreviated ventricular filling time with respect to the complete cardiac cycle, and, on occasion, by early passive ventricular filling flow superimposed on atrial systole dependent flow. Dual chamber pacing, by linking ventricular to atrial activation, normalises flow patterns of ventricular filling, provided atrial contraction …

[1]  A. Lazarus,et al.  Multisite Pacing for End‐Stage Heart Failure: Early Experience , 1996, Pacing and clinical electrophysiology : PACE.

[2]  C. Ng,et al.  Usefulness of physiologic dual-chamber pacing in drug-resistant idiopathic dilated cardiomyopathy. , 1990, The American journal of cardiology.

[3]  M. Rosenqvist,et al.  Results of atrioventricular synchronous pacing with optimized delay in patients with severe congestive heart failure. , 1995, The American journal of cardiology.

[4]  H Le Breton,et al.  Acute hemodynamic effects of biventricular DDD pacing in patients with end-stage heart failure. , 1998, Journal of the American College of Cardiology.

[5]  Andrew P. Kramer,et al.  Effect of pacing chamber and atrioventricular delay on acute systolic function of paced patients with congestive heart failure. The Pacing Therapies for Congestive Heart Failure Study Group. The Guidant Congestive Heart Failure Research Group. , 1999, Circulation.

[6]  J. Schläpfer,et al.  Acute Hemodynamic Effects of Atrioventricular Pacing at Differing Sites in the Right Ventricle Individually and Simultaneously , 1997, Pacing and clinical electrophysiology : PACE.

[7]  D. Gibson,et al.  Effects of dual-chamber pacing with short atrioventricular delay in dilated cardiomyopathy , 1992, The Lancet.

[8]  M. Fisher,et al.  Dual-chamber pacing with a short atrioventricular delay in congestive heart failure: a randomized study. , 1995, Journal of the American College of Cardiology.

[9]  A. Tajik,et al.  Mechanism of hemodynamic improvement by dual-chamber pacing for severe left ventricular dysfunction: an acute Doppler and catheterization hemodynamic study. , 1995, Journal of the American College of Cardiology.

[10]  J. Daubert,et al.  Four Chamber Pacing in Dilated Cardiomyopathy , 1994, Pacing and clinical electrophysiology : PACE.