Assessing the quality of scanning probe microscope designs

We present a method for assessing an atomic force microscope's (AFM's) ability to reject externally applied vibrations. This method is demonstrated on one commercial and two prototype AFMs. For optimally functioning AFMs, we find that the response to externally applied vibrations obeys a 1/ω2 frequency dependence. This 1/ω2 frequency dependence can be understood by modelling the mechanical system which connects the AFM cantilever and the sample under test as a simple harmonic oscillator. According to such a model, the resonant frequency of the mechanical system which connects the AFM cantilever and the sample under test determines an AFM's ability to reject externally applied, low-frequency vibrations.

[1]  C. Quate,et al.  Forces in atomic force microscopy in air and water , 1989 .

[2]  T. Kenny,et al.  Attonewton force detection using ultrathin silicon cantilevers , 1997 .

[3]  C. Siegerist,et al.  Reproducible Imaging and Dissection of Plasmid DNA Under Liquid with the Atomic Force Microscope , 1992, Science.

[4]  C. Quate,et al.  Atomic resolution with the atomic force microscope on conductors and nonconductors , 1988 .

[5]  M. J. Rost,et al.  Plug “n” play scanning probe microscopy , 2000 .

[6]  D. Smith,et al.  Limits of force microscopy , 1995 .

[7]  H. Gaub,et al.  Unfolding pathways of individual bacteriorhodopsins. , 2000, Science.

[8]  Andres F. Oberhauser,et al.  The molecular elasticity of the extracellular matrix protein tenascin , 1998, Nature.

[9]  D. Thompson,et al.  Review of Progress in Quantitative Nondestructive Evaluation , 1982 .

[10]  P K Hansma,et al.  Escherichia coli RNA polymerase activity observed using atomic force microscopy. , 1997, Biochemistry.

[11]  Ami Chand,et al.  Probing protein–protein interactions in real time , 2000, Nature Structural Biology.

[12]  Bielefeldt,et al.  Subatomic Features on the Silicon (111)-(7x7) Surface Observed by Atomic Force Microscopy. , 2000, Science.

[13]  Paul K. Hansma,et al.  Quantized adhesion detected with the atomic force microscope , 1992 .

[14]  Gus Gurley,et al.  Short cantilevers for atomic force microscopy , 1996 .

[15]  M. Rief,et al.  Reversible unfolding of individual titin immunoglobulin domains by AFM. , 1997, Science.

[16]  M. Viani,et al.  Small cantilevers for force spectroscopy of single molecules , 1999 .

[17]  R. Merkel,et al.  Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy , 1999, Nature.

[18]  J. M. Drake,et al.  Special Issue: Dynamics of Molecular Systems , 1990 .

[19]  N. Amer,et al.  Erratum: Novel optical approach to atomic force microscopy [Appl. Phys. Lett. 53, 1045 (1988)] , 1988 .

[20]  H. Gaub,et al.  Adhesion forces between individual ligand-receptor pairs. , 1994, Science.

[21]  C F Quate,et al.  Imaging crystals, polymers, and processes in water with the atomic force microscope. , 1989, Science.

[22]  Gil U. Lee,et al.  Direct measurement of the forces between complementary strands of DNA. , 1994, Science.

[23]  J. Hanson,et al.  Review Of Progress , 1998 .

[24]  P. Hansma,et al.  An atomic-resolution atomic-force microscope implemented using an optical lever , 1989 .

[25]  G. Binnig,et al.  True Atomic Resolution by Atomic Force Microscopy Through Repulsive and Attractive Forces , 1993, Science.

[26]  Deron A. Walters,et al.  Atomic force microscope for small cantilevers , 1997, Photonics West.

[27]  Z. Shao,et al.  Chaperonins GroEL and GroES: views from atomic force microscopy. , 1996, Biophysical journal.