Uncoupling Dendrite Growth and Patterning: Single-Cell Knockout Analysis of NMDA Receptor 2B

[1]  J. Rawlins,et al.  Contribution of Hippocampal and Extra-Hippocampal NR2B-Containing NMDA Receptors to Performance on Spatial Learning Tasks , 2008, Neuron.

[2]  Paul Young,et al.  Single-neuron labeling with inducible Cre-mediated knockout in transgenic mice , 2008, Nature Neuroscience.

[3]  L. Luo,et al.  Timing Neurogenesis and Differentiation: Insights from Quantitative Clonal Analyses of Cerebellar Granule Cells , 2008, The Journal of Neuroscience.

[4]  H. Cline,et al.  The regulation of dendritic arbor development and plasticity by glutamatergic synaptic input: a review of the synaptotrophic hypothesis , 2008, The Journal of physiology.

[5]  F. Gage,et al.  Mechanisms and Functional Implications of Adult Neurogenesis , 2008, Cell.

[6]  H. Cline,et al.  Roles of NR2A and NR2B in the Development of Dendritic Arbor Morphology In Vivo , 2008, The Journal of Neuroscience.

[7]  T. Deerinck,et al.  Regulation of spine morphology and spine density by NMDA receptor signaling in vivo , 2007, Proceedings of the National Academy of Sciences.

[8]  C. Petersen The Functional Organization of the Barrel Cortex , 2007, Neuron.

[9]  M. Poo,et al.  Calcium signaling in neuronal motility. , 2007, Annual review of cell and developmental biology.

[10]  Christoph Schmidt-Hieber,et al.  Subthreshold Dendritic Signal Processing and Coincidence Detection in Dentate Gyrus Granule Cells , 2007, The Journal of Neuroscience.

[11]  Michael D. Kim,et al.  Mechanisms that regulate establishment, maintenance, and remodeling of dendritic fields. , 2007, Annual review of neuroscience.

[12]  L. Luo,et al.  Modeling sporadic loss of heterozygosity in mice by using mosaic analysis with double markers (MADM) , 2007, Proceedings of the National Academy of Sciences.

[13]  M. Crair,et al.  Development of Cortical Maps: Perspectives From the Barrel Cortex , 2007, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[14]  B. Sakmann,et al.  Cortex Is Driven by Weak but Synchronously Active Thalamocortical Synapses , 2006, Science.

[15]  Ryoichiro Kageyama,et al.  Temporal regulation of Cre recombinase activity in neural stem cells , 2006, Genesis.

[16]  J. Olson,et al.  Regulation of Thalamocortical Patterning and Synaptic Maturation by NeuroD2 , 2006, Neuron.

[17]  S. Itohara,et al.  Exuberant thalamocortical axon arborization in cortex‐specific NMDAR1 knockout mice , 2005, The Journal of comparative neurology.

[18]  L. Luo,et al.  Mosaic Analysis with Double Markers in Mice , 2005, Cell.

[19]  Anirvan Ghosh,et al.  Calcium Signaling and the Control of Dendritic Development , 2005, Neuron.

[20]  D. Peterson,et al.  Stem cell proliferative history in tissue revealed by temporal halogenated thymidine analog discrimination , 2005, Nature Methods.

[21]  S. Cull-Candy,et al.  Role of Distinct NMDA Receptor Subtypes at Central Synapses , 2004, Science's STKE.

[22]  E. G. Jones,et al.  Switching of NMDA Receptor 2A and 2B Subunits at Thalamic and Cortical Synapses during Early Postnatal Development , 2004, The Journal of Neuroscience.

[23]  M. Bear,et al.  LTP and LTD An Embarrassment of Riches , 2004, Neuron.

[24]  M. Constantine‐Paton,et al.  Receptor compartmentalization and trafficking at glutamate synapses: a developmental proposal , 2004, Trends in Neurosciences.

[25]  Martin P Meyer,et al.  In vivo imaging of synapse formation on a growing dendritic arbor , 2004, Nature Neuroscience.

[26]  Azad Bonni,et al.  A CaMKII-NeuroD Signaling Pathway Specifies Dendritic Morphogenesis , 2004, Neuron.

[27]  Lily Yeh Jan,et al.  The Control of Dendrite Development , 2003, Neuron.

[28]  E. S. Ruthazer,et al.  Control of Axon Branch Dynamics by Correlated Activity in Vivo , 2003, Science.

[29]  S. Itohara,et al.  NMDA Receptor-Dependent Pattern Transfer from Afferents to Postsynaptic Cells and Dendritic Differentiation in the Barrel Cortex , 2002, Molecular and Cellular Neuroscience.

[30]  Y. Jan,et al.  Progenitor cell maintenance requires numb and numblike during mouse neurogenesis , 2002, Nature.

[31]  R. Wong,et al.  Activity-dependent regulation of dendritic growth and patterning , 2002, Nature Reviews Neuroscience.

[32]  B. Gähwiler,et al.  NMDA receptor activation limits the number of synaptic connections during hippocampal development , 2001, Nature Neuroscience.

[33]  Paul De Koninck,et al.  Interaction with the NMDA receptor locks CaMKII in an active conformation , 2001, Nature.

[34]  Liqun Luo,et al.  How do dendrites take their shape? , 2001, Nature Neuroscience.

[35]  H. Cline,et al.  Dendritic arbor development and synaptogenesis , 2001, Current Opinion in Neurobiology.

[36]  M. Merzenich,et al.  Dendritic bias of neurons in rat somatosensory cortex associated with a functional boundary , 1999, The Journal of comparative neurology.

[37]  G. Westbrook,et al.  The Incorporation of NMDA Receptors with a Distinct Subunit Composition at Nascent Hippocampal Synapses In Vitro , 1999, The Journal of Neuroscience.

[38]  F. Engert,et al.  Dendritic spine changes associated with hippocampal long-term synaptic plasticity , 1999, Nature.

[39]  K. Svoboda,et al.  Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. , 1999, Science.

[40]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[41]  Hollis T. Cline,et al.  Glutamate Receptor Activity Is Required for Normal Development of Tectal Cell Dendrites In Vivo , 1998, The Journal of Neuroscience.

[42]  R. Colbran,et al.  Autophosphorylation-dependent Targeting of Calcium/ Calmodulin-dependent Protein Kinase II by the NR2B Subunit of theN-Methyl- d-aspartate Receptor* , 1998, The Journal of Biological Chemistry.

[43]  E. Kandel,et al.  Synapse-Specific, Long-Term Facilitation of Aplysia Sensory to Motor Synapses: A Function for Local Protein Synthesis in Memory Storage , 1997, Cell.

[44]  U. Frey,et al.  Synaptic tagging and long-term potentiation , 1997, Nature.

[45]  Hiroshi Kadotani,et al.  Motor Discoordination Results from Combined Gene Disruption of the NMDA Receptor NR2A and NR2C Subunits, But Not from Single Disruption of the NR2A or NR2C Subunit , 1996, The Journal of Neuroscience.

[46]  S. Tonegawa,et al.  Modification of NMDA Receptor Channels and Synaptic Transmission by Targeted Disruption of the NR2C Gene , 1996, The Journal of Neuroscience.

[47]  Masahiko Watanabe,et al.  Impairment of Suckling Response, Trigeminal Neuronal Pattern Formation, and Hippocampal LTD in NMDA Receptor ε2 Subunit Mutant Mice , 1996, Neuron.

[48]  T. Yagi,et al.  Reduced spontaneous activity of mice defective in the ε4 subunit of the NMDA receptor channel , 1995 .

[49]  T. Yagi,et al.  Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor ε1 subunit , 1995, Nature.

[50]  B. Schlaggar,et al.  Early development of the somatotopic map and barrel patterning in rat somatosensory cortex , 1994, The Journal of comparative neurology.

[51]  J. Connor,et al.  Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death , 1994, Neuron.

[52]  B. Sakmann,et al.  Developmental and regional expression in the rat brain and functional properties of four NMDA receptors , 1994, Neuron.

[53]  Susumu Tonegawa,et al.  Whisker-related neuronal patterns fail to develop in the trigeminal brainstem nuclei of NMDAR1 knockout mice , 1994, Cell.

[54]  K Williams,et al.  Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. , 1993, Molecular pharmacology.

[55]  K. Sakimura,et al.  Developmental changes in distribution of NMDA receptor channel subunit mRNAs. , 1992, Neuroreport.

[56]  K. Sakimura,et al.  Molecular diversity of the NMDA receptor channel , 1992, Nature.

[57]  Bert Sakmann,et al.  Heteromeric NMDA Receptors: Molecular and Functional Distinction of Subtypes , 1992, Science.

[58]  T A Woolsey,et al.  Growth of thalamic afferents into mouse barrel cortex. , 1991, Cerebral cortex.

[59]  W M Cowan,et al.  Quantitative, three‐dimensional analysis of granule cell dendrites in the rat dentate gyrus , 1990, The Journal of comparative neurology.

[60]  J. Altman,et al.  Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods , 1990, The Journal of comparative neurology.

[61]  R S Erzurumlu,et al.  Thalamic axons confer a blueprint of the sensory periphery onto the developing rat somatosensory cortex. , 1990, Brain research. Developmental brain research.

[62]  H. Cline,et al.  NMDA receptor agonist and antagonists alter retinal ganglion cell arbor structure in the developing frog retinotectal projection , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  E. J. Green,et al.  The dendritic morphology of hippocampal dentate granule cells varies with their position in the granule cell layer: a quantitative Golgi study , 1985, Experimental Brain Research.

[64]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[65]  L. Nowak,et al.  Magnesium gates glutamate-activated channels in mouse central neurones , 1984, Nature.

[66]  W. Cowan,et al.  An autoradiographic study of the development of the entorhinal and commissural afferents to the dentate gyrus of the Rat , 1977, The Journal of comparative neurology.

[67]  D. F. Wann,et al.  Mouse SmI cortex: qualitative and quantitative classification of golgi-impregnated barrel neurons. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[68]  G. Stent A physiological mechanism for Hebb's postulate of learning. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[69]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (S I) of mouse cerebral cortex , 1970 .

[70]  Sholl Da Dendritic organization in the neurons of the visual and motor cortices of the cat. , 1953 .

[71]  J. Knott The organization of behavior: A neuropsychological theory , 1951 .

[72]  T. Yagi,et al.  Reduced spontaneous activity of mice defective in the epsilon 4 subunit of the NMDA receptor channel. , 1995, Brain research. Molecular brain research.

[73]  T. Yagi,et al.  Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. , 1995, Nature.

[74]  M. Constantine-Paton,et al.  Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. , 1990, Annual review of neuroscience.

[75]  J. E. Vaughn,et al.  Fine structure of synaptogenesis in the vertebrate central nervous system. , 1989, Synapse.

[76]  James E. Vaughn,et al.  Review: Fine structure of synaptogenesis in the vertebrate central nervous system , 1989 .

[77]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. , 1970, Brain research.

[78]  D. Sholl Dendritic organization in the neurons of the visual and motor cortices of the cat. , 1953, Journal of anatomy.

[79]  T. Serwold,et al.  Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases , 2022 .