Reconciling Franchisor and Franchisee: A Planar Biobjective Competitive Location and Design Model

This paper deals with a hard nonlinear biobjective optimization problem: finding the optimal location and design for a new franchised facility within a region where facilities (both of the franchise and not) already exist and compete for the market. The franchisor and the new franchisee both want to maximise their own profit in the market, but these two objectives are in conflict. Customers patronize all the facilities, old and new, proportionally to their attraction to them. Both resulting objective functions are neither convex nor concave. An interval branch and bound method is proposed to obtain an outer approximation of the whole set of efficient solutions. Computational experiments highlight the different kinds of information provided by this method and by a variation of the lexicographic method.

[1]  M. J. Hodgson A location—allocation model maximizing consumers' welfare , 1981 .

[2]  Terry L. Friesz,et al.  COMPETITIVE NETWORK FACIUTY LOCATION MODELS: A SURVEY , 2005 .

[3]  Zvi Drezner,et al.  Validating the Gravity-Based Competitive Location Model Using Inferred Attractiveness , 2002, Ann. Oper. Res..

[4]  Jon G. Rokne,et al.  New computer methods for global optimization , 1988 .

[5]  Avijit Ghosh,et al.  FRANSYS: a franchise distribution system location model , 1991 .

[6]  Gilbert Laporte,et al.  Sequential location problems , 1997 .

[7]  Jacques-François Thisse,et al.  Economics of location: A selective survey , 1999, Comput. Oper. Res..

[8]  Jared L. Cohon,et al.  Multiobjective programming and planning , 2004 .

[9]  Blas Pelegrín,et al.  Planar Location and Design of a New Facility with Inner and Outer Competition: An Interval Lexicographical-like Solution Procedure , 2007 .

[10]  Gilbert Laporte,et al.  Competitive Location Models: A Framework and Bibliography , 1993, Transp. Sci..

[11]  Per Joakim Agrell,et al.  An interactive multicriteria decision model for multipurpose reservoir management: the Shellmouth Reservoir , 1998 .

[12]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[13]  Serpil Sayin,et al.  Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming , 2000, Math. Program..

[14]  Blas Pelegrín,et al.  Using Interval Analysis for Solving Planar Single-Facility Location Problems: New Discarding Tests , 2001, J. Glob. Optim..

[15]  Ulrich W. Kulisch,et al.  C++ Toolbox for Verified Computing I , 1995 .

[16]  M.Cs. Markót,et al.  New interval methods for constrained global optimization , 2006, Math. Program..

[17]  Blas Pelegrín,et al.  A continuous location model for siting a non-noxious undesirable facility within a geographical region , 2000, Eur. J. Oper. Res..

[18]  Tibor Csendes,et al.  Empirical Investigation of the Convergence Speed of Inclusion Functions in a Global Optimization Context , 2005, Reliab. Comput..

[19]  Blas Pelegrín,et al.  Estimating actual distances by norm functions: a comparison between the lk, p, theta-norm and the lb1, b2, theta-norm and a study about the selection of the data set , 2002, Comput. Oper. Res..

[20]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[21]  Kim Allan Andersen,et al.  The bicriterion semi-obnoxious location (BSL) problem solved by an epsilon-approximation , 2003, Eur. J. Oper. Res..

[22]  R. E. Wendell,et al.  New perspectives in competitive location theory , 1981 .

[23]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[24]  Thomas Hanne,et al.  On the Development and Future Aspects of Vector Optimization and MCDM , 1997 .

[25]  Kathrin Klamroth,et al.  An MCDM approach to portfolio optimization , 2004, Eur. J. Oper. Res..

[26]  Fernando Alonso,et al.  Intensity-modulated radiotherapy – a large scale multi-criteria programming problem , 2003, OR Spectr..

[27]  D. J. White,et al.  A Bibliography on the Applications of Mathematical Programming Multiple-objective Methods , 1990 .

[28]  Jacques-François Thisse,et al.  Perceptual maps and the optimal location of new products , 1985 .

[29]  Peter C. Fishburn,et al.  LEXICOGRAPHIC ORDERS, UTILITIES AND DECISION RULES: A SURVEY , 1974 .

[30]  Eduardo Conde,et al.  Location of a Semiobnoxious Facility: A Biobjective Approach , 1997 .

[31]  Blas Pelegrín,et al.  Solving a Huff-like competitive location and design model for profit maximization in the plane , 2007, Eur. J. Oper. Res..

[32]  Lee G. Cooper,et al.  Parameter Estimation for a Multiplicative Competitive Interaction Model—Least Squares Approach , 1974 .

[33]  T. Drezner Optimal continuous location of a retail facility, facility attractiveness, and market share: An interactive model , 1994 .

[34]  Yasuo Fujii,et al.  Multicriterion optimization using interval analysis , 1990, Computing.

[35]  O. Knüppel,et al.  PROFIL/BIAS—A fast interval library , 1994, Computing.

[36]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[37]  Matthias Ehrgott,et al.  Constructing robust crew schedules with bicriteria optimization , 2002 .

[38]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[39]  H. P. Benson,et al.  Towards finding global representations of the efficient set in multiple objective mathematical programming , 1997 .

[40]  F. Plastria GBSSS: The generalized big square small square method for planar single-facility location , 1992 .

[41]  David L. Huff,et al.  Defining and Estimating a Trading Area , 1964 .

[42]  Marc J. Schniederjans,et al.  A multi-criteria modeling approach to jury selection , 2005 .

[43]  Frank Plastria,et al.  Static competitive facility location: An overview of optimisation approaches , 2001, Eur. J. Oper. Res..

[44]  Ralph E. Steuer,et al.  A multi-period, multiple criteria optimization system for manpower planning☆ , 1988 .

[45]  Jacques-François Thisse,et al.  Constrained Location and the Weber-Rawls Problem , 1981 .