The Human Connectome Project: A retrospective

[1]  P. Hare Advance Online Publication , 2002, Nature Medicine.

[2]  N. Fox,et al.  NIH Toolbox for Assessment of Neurological and Behavioral Function , 2013, Neurology.

[3]  Roberto Toro,et al.  A collaborative resource platform for non-human primate neuroimaging , 2020, NeuroImage.

[4]  Lawrence L. Wald,et al.  In vivo human whole-brain Connectom diffusion MRI dataset at 760 µm isotropic resolution , 2020, Scientific Data.

[5]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[6]  Essa Yacoub,et al.  The Lifespan Human Connectome Project in Development: A large-scale study of brain connectivity development in 5–21 year olds , 2018, NeuroImage.

[7]  Daniel S. Marcus,et al.  The extensible neuroimaging archive toolkit , 2007, Neuroinformatics.

[8]  Mark Jenkinson,et al.  MSM: A new flexible framework for Multimodal Surface Matching , 2014, NeuroImage.

[9]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[10]  Jonathan D. Power,et al.  Intrinsic and Task-Evoked Network Architectures of the Human Brain , 2014, Neuron.

[11]  Nora C. Vetter,et al.  Test-retest reliability of longitudinal task-based fMRI: Implications for developmental studies , 2017, Developmental Cognitive Neuroscience.

[12]  Thomas Witzel,et al.  HIgh b-value and high Resolution Integrated Diffusion (HIBRID) imaging , 2017, NeuroImage.

[13]  L. Wald,et al.  A 64‐channel 3T array coil for accelerated brain MRI , 2013, Magnetic resonance in medicine.

[14]  Ramón y Cajal,et al.  Histologie du système nerveux de l'homme & des vertébrés , 1909 .

[15]  D. Javitt,et al.  Parcel-guided rTMS for depression , 2020, Translational Psychiatry.

[16]  Angel Torrado-Carvajal,et al.  In vivo human head MRI at 10.5T: A radiofrequency safety study and preliminary imaging results , 2019, Magnetic resonance in medicine.

[17]  J. Andersson,et al.  Non-Negative Data-Driven Mapping of Structural Connections with Application to the Neonatal Brain , 2020, NeuroImage.

[18]  Lawrence R. Frank,et al.  Joint Estimation of Effective Brain Wave Activation Modes Using EEG/MEG Sensor Arrays and Multimodal MRI Volumes , 2018, Neural Computation.

[19]  A. Blashill,et al.  Prevalence of Eating Disorders Among US Children Aged 9 to 10 Years: Data From the Adolescent Brain Cognitive Development (ABCD) Study , 2019, JAMA pediatrics.

[20]  Kawin Setsompop,et al.  Evaluation of SLIce Dithered Enhanced Resolution Simultaneous MultiSlice (SLIDER-SMS) for human fMRI , 2018, NeuroImage.

[21]  Karla L. Miller,et al.  Diffusion tractography of post-mortem human brains: Optimization and comparison of spin echo and steady-state free precession techniques , 2012, NeuroImage.

[22]  S. Haber,et al.  Modelling white matter in gyral blades as a continuous vector field , 2020, NeuroImage.

[23]  M. Smolka,et al.  Corrigendum to “Addressing the reliability fallacy in fMRI: Similar group effects may arise from unreliable individual effects” [NeuroImage 195 (2019) 174–189/1053–8119] , 2020, NeuroImage.

[24]  Matthew F. Glasser,et al.  Ciftify: A framework for surface-based analysis of legacy MR acquisitions , 2018, NeuroImage.

[25]  Abraham Z. Snyder,et al.  Human Connectome Project informatics: Quality control, database services, and data visualization , 2013, NeuroImage.

[26]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[27]  Evan M. Gordon,et al.  Functional System and Areal Organization of a Highly Sampled Individual Human Brain , 2015, Neuron.

[28]  John Duncan,et al.  Precise Topology of Adjacent Domain-General and Sensory-Biased Regions in the Human Brain , 2021, bioRxiv.

[29]  B. J. Casey,et al.  Baseline brain function in the preadolescents of the ABCD Study , 2021, Nature Neuroscience.

[30]  P. Sham,et al.  Power of linkage versus association analysis of quantitative traits, by use of variance-components models, for sibship data. , 2000, American journal of human genetics.

[31]  Jan Sijbers,et al.  Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data , 2014, NeuroImage.

[32]  T. Lancaster Associations between rare microglia-linked Alzheimer's disease risk variants and subcortical brain volumes in young individuals , 2019, Alzheimer's & dementia.

[33]  Daniel Rueckert,et al.  The developing Human Connectome Project (dHCP) automated resting-state functional processing framework for newborn infants , 2019, NeuroImage.

[34]  Damien A. Fair,et al.  Defining functional areas in individual human brains using resting functional connectivity MRI , 2008, NeuroImage.

[35]  T. Robbins,et al.  Neurobehavioral mechanisms of impulsivity: Fronto-striatal systems and functional neurochemistry , 2008, Pharmacology Biochemistry and Behavior.

[36]  Evan M. Gordon,et al.  Precision Functional Mapping of Individual Human Brains , 2017, Neuron.

[37]  Emily J. Allen,et al.  Extensive sampling for complete models of individual brains , 2021, Current Opinion in Behavioral Sciences.

[38]  T. Jernigan,et al.  Introduction , 2018, Developmental Cognitive Neuroscience.

[39]  Daniel E. Worrall,et al.  Uncertainty modelling in deep learning for safer neuroimage enhancement: Demonstration in diffusion MRI , 2020, NeuroImage.

[40]  Tyrone D. Cannon,et al.  Functional connectome-wide associations of schizophrenia polygenic risk , 2020, Biological Psychiatry.

[41]  Saori C. Tanaka,et al.  Brain/MINDS beyond human brain MRI project: A protocol for multi-level harmonization across brain disorders throughout the lifespan , 2021, NeuroImage: Clinical.

[42]  Timothy Edward John Behrens,et al.  Improved tractography using asymmetric fibre orientation distributions , 2017, NeuroImage.

[43]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[44]  Clifford R. Jack,et al.  Changing the face of neuroimaging research: Comparing a new MRI de-facing technique with popular alternatives , 2021, NeuroImage.

[45]  S. Haber,et al.  Post mortem mapping of connectional anatomy for the validation of diffusion MRI , 2021, NeuroImage.

[46]  Steen Moeller,et al.  High‐resolution whole‐brain diffusion MRI at 7T using radiofrequency parallel transmission , 2018, Magnetic resonance in medicine.

[47]  Ludovica Griffanti,et al.  Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers , 2014, NeuroImage.

[48]  Dinggang Shen,et al.  Mitigating Gyral Bias in Cortical Tractography via Asymmetric Fiber Orientation Distributions , 2019, Medical Image Anal..

[49]  A. Mehta,et al.  Evoking highly focal percepts in the fingertips through targeted stimulation of sulcal regions of the brain for sensory restoration , 2020, Brain Stimulation.

[50]  Xiaoping Wu,et al.  Optimizing BOLD sensitivity in the 7T Human Connectome Project resting-state fMRI protocol using plug-and-play parallel transmission , 2019, NeuroImage.

[51]  R. Passingham,et al.  Whole brain comparative anatomy using connectivity blueprints , 2018, bioRxiv.

[52]  Robert Oostenveld,et al.  MEG-BIDS, the brain imaging data structure extended to magnetoencephalography , 2018, Scientific Data.

[53]  J. Polimeni,et al.  Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty , 2012, Magnetic resonance in medicine.

[54]  Timothy O. Laumann,et al.  Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations. , 2016, Cerebral cortex.

[55]  Hui Zhang,et al.  Towards a comprehensive framework for movement and distortion correction of diffusion MR images: Within volume movement , 2017, NeuroImage.

[56]  Abraham Z. Snyder,et al.  Function in the human connectome: Task-fMRI and individual differences in behavior , 2013, NeuroImage.

[57]  P. Matthews,et al.  Multimodal population brain imaging in the UK Biobank prospective epidemiological study , 2016, Nature Neuroscience.

[58]  N. Fox,et al.  Assessment of neurological and behavioural function: the NIH Toolbox , 2010, The Lancet Neurology.

[59]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[60]  Evan M. Gordon,et al.  Long-term neural and physiological phenotyping of a single human , 2015, Nature Communications.

[61]  Feng Li,et al.  A connectome and analysis of the adult Drosophila central brain , 2020, bioRxiv.

[62]  Matthew F. Glasser,et al.  A Domain-General Cognitive Core Defined in Multimodally Parcellated Human Cortex , 2019, bioRxiv.

[63]  Steen Moeller,et al.  Evaluation of slice accelerations using multiband echo planar imaging at 3T , 2013, NeuroImage.

[64]  Stefan Skare,et al.  How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging , 2003, NeuroImage.

[65]  Colin L. Sauder,et al.  Robust is not necessarily reliable: From within-subjects fMRI contrasts to between-subjects comparisons , 2018, NeuroImage.

[66]  Graham L. Baum,et al.  Empirical transmit field bias correction of T1w/T2w myelin maps , 2021, NeuroImage.

[67]  Peter F. Neher,et al.  The challenge of mapping the human connectome based on diffusion tractography , 2017, Nature Communications.

[68]  Daniel Rueckert,et al.  Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project , 2019, NeuroImage.

[69]  D. V. Essen,et al.  Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural Dynamics , 2018, Neuron.

[70]  Thomas E. Nichols,et al.  Best practices in data analysis and sharing in neuroimaging using MRI , 2017, Nature Neuroscience.

[71]  Steen Moeller,et al.  Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project , 2013, NeuroImage.

[72]  Matthew F. Glasser,et al.  Parcellating Cerebral Cortex: How Invasive Animal Studies Inform Noninvasive Mapmaking in Humans , 2018, Neuron.

[73]  Daniel S. Margulies,et al.  Body Topography Parcellates Human Sensory and Motor Cortex , 2017, Cerebral cortex.

[74]  Juliane H. Fröhner,et al.  Addressing the reliability fallacy in fMRI: Similar group effects may arise from unreliable individual effects , 2019, NeuroImage.

[75]  Hui Zhang,et al.  Susceptibility-induced distortion that varies due to motion: Correction in diffusion MR without acquiring additional data , 2017, NeuroImage.

[76]  Chad J. Donahue,et al.  Using Diffusion Tractography to Predict Cortical Connection Strength and Distance: A Quantitative Comparison with Tracers in the Monkey , 2016, The Journal of Neuroscience.

[77]  E. Leuthardt,et al.  Multi-modal biomarkers of low back pain: A machine learning approach , 2020, NeuroImage: Clinical.

[78]  Mark W. Woolrich,et al.  Resting-state fMRI in the Human Connectome Project , 2013, NeuroImage.

[79]  T. Ge,et al.  Resting brain dynamics at different timescales capture distinct aspects of human behavior , 2019, Nature Communications.

[80]  John W. Harwell,et al.  Cortical parcellations of the macaque monkey analyzed on surface-based atlases. , 2012, Cerebral cortex.

[81]  Noah A. Shamosh,et al.  Individual Differences in Delay Discounting , 2008, Psychological science.

[82]  Anders M. Dale,et al.  Image processing and analysis methods for the Adolescent Brain Cognitive Development Study , 2018, NeuroImage.

[83]  D. Dima,et al.  An integrated brain-behavior model for working memory , 2017, Molecular Psychiatry.

[84]  Bradley C. Love,et al.  Variability in the analysis of a single neuroimaging dataset by many teams , 2019, Nature.

[85]  D. Barch,et al.  The ABCD study: understanding the development of risk for mental and physical health outcomes , 2020, Neuropsychopharmacology.

[86]  D. V. van Essen,et al.  Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Stamatios N. Sotiropoulos,et al.  Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images , 2016, NeuroImage.

[88]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[89]  William Z Rymer,et al.  Motor assessment using the NIH Toolbox , 2013, Neurology.

[90]  K. Amunts,et al.  Architectonic Mapping of the Human Brain beyond Brodmann , 2015, Neuron.

[91]  Daniel J Buysse,et al.  The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research , 1989, Psychiatry Research.

[92]  Dustin Scheinost,et al.  Combining multiple connectomes improves predictive modeling of phenotypic measures , 2019, NeuroImage.

[93]  Timothy O. Laumann,et al.  Towards Reproducible Brain-Wide Association Studies , 2020, bioRxiv.

[94]  Robert Oostenveld,et al.  ConnectomeDB—Sharing human brain connectivity data , 2016, NeuroImage.

[95]  Steen Moeller,et al.  NOise reduction with DIstribution Corrected (NORDIC) PCA in dMRI with complex-valued parameter-free locally low-rank processing , 2020, NeuroImage.

[96]  Dinggang Shen,et al.  The UNC/UMN Baby Connectome Project (BCP): An overview of the study design and protocol development , 2019, NeuroImage.

[97]  Satrajit S. Ghosh,et al.  FMRIPrep: a robust preprocessing pipeline for functional MRI , 2018, bioRxiv.

[98]  Timothy O. Laumann,et al.  Sources and implications of whole-brain fMRI signals in humans , 2017, NeuroImage.

[99]  Kamil Uğurbil,et al.  ULTRAHIGH FIELD and ULTRAHIGH RESOLUTION fMRI. , 2021, Current opinion in biomedical engineering.

[100]  T. Lancaster,et al.  Evidence for association between familial bipolar risk and ventral striatal volume , 2018, Journal of affective disorders.

[101]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[102]  Essa Yacoub,et al.  The Lifespan Human Connectome Project in Aging: An overview , 2019, NeuroImage.

[103]  N. Volkow,et al.  The conception of the ABCD study: From substance use to a broad NIH collaboration , 2017, Developmental Cognitive Neuroscience.

[104]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[105]  Jonathan D. Power,et al.  Recent progress and outstanding issues in motion correction in resting state fMRI , 2015, NeuroImage.

[106]  Stephen M. Smith,et al.  Temporally-independent functional modes of spontaneous brain activity , 2012, Proceedings of the National Academy of Sciences.

[107]  Daniel Rueckert,et al.  The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction , 2017, NeuroImage.

[108]  Bruce Fischl,et al.  Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI , 2012, Magnetic resonance in medicine.

[109]  D. Barch,et al.  Genetic Predisposition vs Individual-Specific Processes in the Association Between Psychotic-like Experiences and Cannabis Use , 2019, JAMA psychiatry.

[110]  Andrew Zalesky,et al.  Building connectomes using diffusion MRI: why, how and but , 2017, NMR in biomedicine.

[111]  Pak Chung Sham,et al.  Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits , 2003, Bioinform..

[112]  Maxime Descoteaux,et al.  Surface-enhanced tractography (SET) , 2017, NeuroImage.

[113]  Logan T Dowdle,et al.  Lowering the thermal noise barrier in functional brain mapping with magnetic resonance imaging , 2020, Nature Communications.

[114]  Alexander Leemans,et al.  Spherical deconvolution with tissue-specific response functions and multi-shell diffusion MRI to estimate multiple fiber orientation distributions (mFODs) , 2019, NeuroImage.

[115]  Tomoki Arichi,et al.  A dedicated neonatal brain imaging system , 2016, Magnetic resonance in medicine.

[116]  Christian Windischberger,et al.  Toward discovery science of human brain function , 2010, Proceedings of the National Academy of Sciences.

[117]  Ole Jensen,et al.  Dorsal and ventral cortices are coupled by cross-frequency interactions during working memory , 2018, NeuroImage.

[118]  David C Van Essen,et al.  The impact of traditional neuroimaging methods on the spatial localization of cortical areas , 2018, Proceedings of the National Academy of Sciences.

[119]  Steen Moeller,et al.  Human Connectome Project-style resting-state functional MRI at 7 Tesla using radiofrequency parallel transmission , 2019, NeuroImage.

[120]  Daniel Rueckert,et al.  Multimodal surface matching with higher-order smoothness constraints , 2017, NeuroImage.

[121]  Julien Cohen-Adad,et al.  Pushing the limits of in vivo diffusion MRI for the Human Connectome Project , 2013, NeuroImage.

[122]  V. Wedeen,et al.  Simultaneous echo refocusing in EPI , 2002, Magnetic resonance in medicine.

[123]  Timothy Edward John Behrens,et al.  Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: Reducing the noise floor using SENSE , 2013, Magnetic resonance in medicine.

[124]  A Kangarlu,et al.  Resting state functional connectivity predictors of treatment response to electroconvulsive therapy in depression , 2019, Scientific Reports.

[125]  Stamatios N. Sotiropoulos,et al.  An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging , 2016, NeuroImage.

[126]  Bennett A Landman,et al.  Confirmation of a gyral bias in diffusion MRI fiber tractography , 2018, Human brain mapping.

[127]  Jonathan D. Power,et al.  Rapid Precision Functional Mapping of Individuals Using Multi-Echo fMRI , 2020, Cell reports.

[128]  Michael B. Miller,et al.  How reliable are the results from functional magnetic resonance imaging? , 2010, Annals of the New York Academy of Sciences.

[129]  Hans Knutsson,et al.  Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates , 2016, Proceedings of the National Academy of Sciences.

[130]  Steen Moeller,et al.  Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI , 2010, Magnetic resonance in medicine.

[131]  P. Bandettini,et al.  Movie-watching outperforms rest for functional connectivity-based prediction of behavior , 2020, NeuroImage.

[132]  Stephen M. Smith,et al.  Probabilistic independent component analysis for functional magnetic resonance imaging , 2004, IEEE Transactions on Medical Imaging.

[133]  Steen Moeller,et al.  The Human Connectome Project's neuroimaging approach , 2016, Nature Neuroscience.

[134]  Vasily L Yarnykh,et al.  Actual flip‐angle imaging in the pulsed steady state: A method for rapid three‐dimensional mapping of the transmitted radiofrequency field , 2007, Magnetic resonance in medicine.

[135]  Saâd Jbabdi,et al.  Concurrent white matter bundles and grey matter networks using independent component analysis , 2017, NeuroImage.

[136]  Thomas E. Nichols,et al.  Extending the Human Connectome Project across ages: Imaging protocols for the Lifespan Development and Aging projects , 2018, NeuroImage.

[137]  Annchen R. Knodt,et al.  The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences , 2017, Behavior Research Methods.

[138]  Matthew F. Glasser,et al.  Trends and Properties of Human Cerebral Cortex: Correlations with Cortical Myelin Content Introduction and Review , 2022 .

[139]  Timothy S. Coalson,et al.  Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. , 2012, Cerebral cortex.

[140]  D. Barch,et al.  Perceived stress is associated with increased rostral middle frontal gyrus cortical thickness: a family‐based and discordant‐sibling investigation , 2017, Genes, brain, and behavior.

[141]  François Tadel,et al.  Brainstorm Pipeline Analysis of Resting-State Data From the Open MEG Archive , 2019, Front. Neurosci..

[142]  Thomas E. Nichols,et al.  A positive-negative mode of population covariation links brain connectivity, demographics and behavior , 2015, Nature Neuroscience.

[143]  Stephen M. Smith,et al.  Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data , 2017, NeuroImage.

[144]  Timothy O. Laumann,et al.  Methods to detect, characterize, and remove motion artifact in resting state fMRI , 2014, NeuroImage.

[145]  C. Jack,et al.  Alzheimer's Disease Neuroimaging Initiative , 2008 .

[146]  N J Pelc,et al.  Analysis and generalized correction of the effect of spatial gradient field distortions in diffusion‐weighted imaging , 2003, Magnetic resonance in medicine.

[147]  Sean P. Fitzgibbon,et al.  Automated quality control for within and between studies diffusion MRI data using a non-parametric framework for movement and distortion correction , 2019, NeuroImage.

[148]  Bruce R. Rosen,et al.  The Mind of a Mouse , 2020, Cell.

[149]  Timothy Edward John Behrens,et al.  Task-free MRI predicts individual differences in brain activity during task performance , 2016, Science.

[150]  Suhua Chang,et al.  Polygenic evidence and overlapped brain functional connectivities for the association between chronic pain and sleep disturbance , 2020, Translational Psychiatry.

[151]  Essa Yacoub,et al.  The NonHuman Primate Neuroimaging & Neuroanatomy Project , 2020, 2010.00308.

[152]  Charles Hildebolt,et al.  Facial Recognition From Volume-Rendered Magnetic Resonance Imaging Data , 2009, IEEE Transactions on Information Technology in Biomedicine.

[153]  Matthew F. Glasser,et al.  The Brain Analysis Library of Spatial maps and Atlases (BALSA) database , 2017, NeuroImage.

[154]  Anders M. Dale,et al.  The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites , 2018, Developmental Cognitive Neuroscience.

[155]  Eric Halgren,et al.  A Whole-Cortex Probabilistic Diffusion Tractography Connectome , 2020, eNeuro.

[156]  Mark W. Woolrich,et al.  Adding dynamics to the Human Connectome Project with MEG , 2013, NeuroImage.

[157]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[158]  Alejandro F. Frangi,et al.  The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions , 2020, Nature Communications.

[159]  Daniel S. Marcus,et al.  Obscuring Surface Anatomy in Volumetric Imaging Data , 2012, Neuroinformatics.

[160]  Steen Moeller,et al.  Fusion in diffusion MRI for improved fibre orientation estimation: An application to the 3T and 7T data of the Human Connectome Project , 2016, NeuroImage.

[161]  D. Feinberg,et al.  Highly accelerated submillimeter resolution 3D GRASE with controlled T2 blurring in T2 ‐weighted functional MRI at 7 Tesla: A feasibility study , 2020, Magnetic resonance in medicine.

[162]  Thomas E. Nichols,et al.  The heritability of multi-modal connectivity in human brain activity , 2017, eLife.

[163]  Essa Yacoub,et al.  Minimal specifications for non-human primate MRI: Challenges in standardizing and harmonizing data collection , 2020, NeuroImage.

[164]  Stamatios N. Sotiropoulos,et al.  Mapping Connections in Humans and Non-Human Primates , 2014 .

[165]  Timothy R. Olsen,et al.  The Extensible Neuroimaging Archive Toolkit: an informatics platform for managing, exploring, and sharing neuroimaging data. , 2007, Neuroinformatics.

[166]  Robert K. Heaton,et al.  Reliability and Validity of Composite Scores from the NIH Toolbox Cognition Battery in Adults , 2014, Journal of the International Neuropsychological Society.

[167]  Timothy Edward John Behrens,et al.  Functional Segmentation of the Anterior Limb of the Internal Capsule: Linking White Matter Abnormalities to Specific Connections , 2018, The Journal of Neuroscience.

[168]  Martin Luessi,et al.  MEG and EEG data analysis with MNE-Python , 2013, Front. Neuroinform..

[169]  Derek K. Jones,et al.  “Squashing peanuts and smashing pumpkins”: How noise distorts diffusion‐weighted MR data , 2004, Magnetic resonance in medicine.

[170]  Paola Galdi,et al.  Resting-State Functional Brain Connectivity Best Predicts the Personality Dimension of Openness to Experience , 2018, Personality Neuroscience.

[171]  Evan M. Gordon,et al.  Local-Global Parcellation of the Human Cerebral Cortex From Intrinsic Functional Connectivity MRI , 2017, bioRxiv.

[172]  M. Chun,et al.  Functional connectome fingerprinting: Identifying individuals based on patterns of brain connectivity , 2015, Nature Neuroscience.

[173]  Timothy Edward John Behrens,et al.  High resolution diffusion-weighted imaging in fixed human brain using diffusion-weighted steady state free precession , 2009, NeuroImage.

[174]  Mark W. Woolrich,et al.  Optimising network modelling methods for fMRI , 2019, NeuroImage.

[175]  Bruce Fischl,et al.  Accurate and robust brain image alignment using boundary-based registration , 2009, NeuroImage.

[176]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[177]  Stephen M. Smith,et al.  Permutation inference for the general linear model , 2014, NeuroImage.

[178]  N. Fox,et al.  Cognition assessment using the NIH Toolbox , 2013, Neurology.

[179]  Carlo Pierpaoli,et al.  Brain connections derived from diffusion MRI tractography can be highly anatomically accurate—if we know where white matter pathways start, where they end, and where they do not go , 2020, Brain Structure and Function.

[180]  Richard M. Leahy,et al.  Brainstorm: A User-Friendly Application for MEG/EEG Analysis , 2011, Comput. Intell. Neurosci..

[181]  Yi Wang,et al.  Whole-animal connectomes of both Caenorhabditis elegans sexes , 2019, Nature.

[182]  Ben D. Fulcher,et al.  Genetic influences on hub connectivity of the human connectome , 2020, Nature Communications.

[183]  Antonio Criminisi,et al.  Image quality transfer and applications in diffusion MRI , 2017, NeuroImage.

[184]  Aapo Hyvärinen,et al.  Group-PCA for very large fMRI datasets , 2014, NeuroImage.

[185]  Stephen M. Smith,et al.  Using GPUs to accelerate computational diffusion MRI: From microstructure estimation to tractography and connectomes , 2018, NeuroImage.

[186]  Satrajit S. Ghosh,et al.  The Open Brain Consent: Informing research participants and obtaining consent to share brain imaging data , 2020, Human brain mapping.

[187]  Stamatios N. Sotiropoulos,et al.  Towards HCP-Style macaque connectomes: 24-Channel 3T multi-array coil, MRI sequences and preprocessing , 2019, NeuroImage.

[188]  Steen Moeller,et al.  Advances in diffusion MRI acquisition and processing in the Human Connectome Project , 2013, NeuroImage.

[189]  R. Gur,et al.  Development of Abbreviated Nine-Item Forms of the Raven’s Standard Progressive Matrices Test , 2012, Assessment.

[190]  David K. Yu,et al.  Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography , 2015, Proceedings of the National Academy of Sciences.

[191]  C. Liao,et al.  In vivo human whole-brain Connectom diffusion MRI dataset at 760 µm isotropic resolution , 2021, Scientific data.

[192]  Dustin Scheinost,et al.  Task-induced brain state manipulation improves prediction of individual traits , 2018, Nature Communications.

[193]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[194]  Thomas Lippert,et al.  Derivation of Fiber Orientations From Oblique Views Through Human Brain Sections in 3D-Polarized Light Imaging , 2018, Front. Neuroanat..

[195]  Stephen M. Smith,et al.  Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging , 2010, PloS one.

[196]  Christopher R. Jones,et al.  Sleep duration and resting fMRI functional connectivity: examination of short sleepers with and without perceived daytime dysfunction , 2016, Brain and behavior.

[197]  Stamatios N. Sotiropoulos,et al.  XTRACT - Standardised protocols for automated tractography and connectivity blueprints in the human and macaque brain , 2019, bioRxiv.

[198]  Jonathan Winawer,et al.  The Human Connectome Project 7 Tesla retinotopy dataset: Description and population receptive field analysis , 2018, Journal of vision.

[199]  Liang Wang,et al.  Probabilistic Maps of Visual Topography in Human Cortex. , 2015, Cerebral cortex.

[200]  Ravi S. Menon,et al.  Accelerating the Evolution of Nonhuman Primate Neuroimaging , 2020, Neuron.

[201]  S.N. Sotiropoulos,et al.  High resolution whole brain diffusion imaging at 7T for the Human Connectome Project , 2015, NeuroImage.

[202]  Jonathan D. Power,et al.  Ridding fMRI data of motion-related influences: Removal of signals with distinct spatial and physical bases in multiecho data , 2018, Proceedings of the National Academy of Sciences.

[203]  Mert R. Sabuncu,et al.  Global signal regression strengthens association between resting-state functional connectivity and behavior , 2019, NeuroImage.