Neural Correlates of an Auditory Afterimage in Primary Auditory Cortex

[1]  W. J. Melssen,et al.  Detection and estimation of neural connectivity based on crosscorrelation analysis , 1987, Biological Cybernetics.

[2]  William M. Siebert,et al.  Some implications of the stochastic behavior of primary auditory neurons , 1965, Kybernetik.

[3]  Lionel Collet,et al.  Psychoacoustic Characterization of the Tinnitus Spectrum: Implications for the Underlying Mechanisms of Tinnitus , 2002, Audiology and Neurotology.

[4]  Michael B. Calford,et al.  Dynamic representational plasticity in sensory cortex , 2002, Neuroscience.

[5]  L. G. Cohen,et al.  Nervous system reorganization following injury , 2002, Neuroscience.

[6]  C. Micheyl,et al.  Loudness changes associated with the perception of an auditory after-image: Cambios en la intensidad asociados a la percepción de una imagen post-auditiva , 2002, International journal of audiology.

[7]  C. Micheyl,et al.  An auditory negative after-image as a human model of tinnitus , 2000, Hearing Research.

[8]  J J Eggermont,et al.  Spontaneous firing activity of cortical neurons in adult cats with reorganized tonotopic map following pure-tone trauma. , 2000, Acta oto-laryngologica.

[9]  Jos J Eggermont,et al.  Moderate noise trauma in juvenile cats results in profound cortical topographic map changes in adulthood , 2000, Hearing Research.

[10]  Almut Engelien,et al.  Short-term plasticity of the human auditory cortex , 1999, Brain Research.

[11]  J. A. Varela,et al.  Differential Depression at Excitatory and Inhibitory Synapses in Visual Cortex , 1999, The Journal of Neuroscience.

[12]  Josef P. Rauschecker,et al.  Auditory cortical plasticity: a comparison with other sensory systems , 1999, Trends in Neurosciences.

[13]  Hugo Fastl,et al.  Psychoacoustics Facts and Models. 2nd updated edition , 1999 .

[14]  S. Hestrin,et al.  Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex , 1998, Nature Neuroscience.

[15]  J. Eggermont Representation of spectral and temporal sound features in three cortical fields of the cat. Similarities outweigh differences. , 1998, Journal of neurophysiology.

[16]  B. Ross,et al.  Auditory afterimage: Tonotopic representation in the auditory cortex , 1998, NeuroReport.

[17]  J J Eggermont,et al.  Firing rate and firing synchrony distinguish dynamic from steady state sound , 1997, Neuroreport.

[18]  Thomas J. Carew,et al.  Multiple overlapping processes underlying short-term synaptic enhancement , 1997, Trends in Neurosciences.

[19]  M. Kössl,et al.  Auditory enhancement at the absolute threshold of hearing and its relationship to the Zwicker tone , 1996, Hearing Research.

[20]  R. Christopher deCharms,et al.  Primary cortical representation of sounds by the coordination of action-potential timing , 1996, Nature.

[21]  B. Ross,et al.  Neurophysiological correlate of the auditory after-image ('Zwicker tone'). , 1996, Audiology & neuro-otology.

[22]  C. Gilbert,et al.  Receptive field expansion in adult visual cortex is linked to dynamic changes in strength of cortical connections. , 1995, Journal of neurophysiology.

[23]  J. Donoghue,et al.  Long-term potentiation of horizontal connections provides a mechanism to reorganize cortical motor maps. , 1994, Journal of neurophysiology.

[24]  F. de Ribaupierre,et al.  Changes of single unit activity in the cat's auditory thalamus and cortex associated to different anesthetic conditions , 1994, Neuroscience Research.

[25]  J J Eggermont,et al.  Neural interaction in cat primary auditory cortex II. Effects of sound stimulation. , 1994, Journal of neurophysiology.

[26]  D. Irvine,et al.  Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex , 1993, The Journal of comparative neurology.

[27]  J J Eggermont,et al.  Neural interaction in cat primary auditory cortex. Dependence on recording depth, electrode separation, and age. , 1992, Journal of neurophysiology.

[28]  D. P. Phillips,et al.  Multiplicity of inputs in the afferent path to cat auditory cortex neurons revealed by tone-on-tone masking. , 1992, Cerebral cortex.

[29]  Robert C. Malenka,et al.  Postsynaptic factors control the duration of synaptic enhancement in area CA1 of the hippocampus , 1991, Neuron.

[30]  R. Malenka Postsynaptic Factors Control the Duration of Synaptic Enhancement of the Hippocampus in Area CA1 , 1991 .

[31]  J. Eggermont The Correlative Brain: Theory and Experiment in Neural Interaction , 1990 .

[32]  Professor Dr. Jos J. Eggermont The Correlative Brain , 1990, Studies of Brain Function.

[33]  B. Moore An introduction to the psychology of hearing, 3rd ed. , 1989 .

[34]  J. Champagnat,et al.  N-Methyl-d-aspartate (NMDA) receptors control respiratory off-switch in cat , 1988, Neuroscience Letters.

[35]  Shihab A. Shamma,et al.  Patterns of inhibition in auditory cortical cells in awake squirrel monkeys , 1985, Hearing Research.

[36]  N. Viemeister,et al.  Forward masking by enhanced components in harmonic complexes. , 1982, The Journal of the Acoustical Society of America.

[37]  M. Abeles Local Cortical Circuits: An Electrophysiological Study , 1982 .

[38]  P. Dallos,et al.  Forward masking of auditory nerve fiber responses. , 1979, Journal of neurophysiology.

[39]  R L Smith,et al.  Short-term adaptation in single auditory nerve fibers: some poststimulatory effects. , 1976, Journal of neurophysiology.

[40]  E. Zwicker “Negative Afterimage” in Hearing , 1964 .

[41]  Jozef J. Zwislocki,et al.  Analysis of Some Auditory Characteristics. , 1963 .

[42]  Eugene Galanter,et al.  Handbook of mathematical psychology: I. , 1963 .