Further constructions of control-Lyapunov functions and stabilizing feedbacks for systems satisfying the Jurdjevic-Quinn conditions

For a broad class of nonlinear systems, we construct smooth control-Lyapunov functions. We assume our systems satisfy appropriate generalizations of the Jurdjevic-Quinn conditions. We also design state feedbacks of arbitrarily small norm that render our systems integral-input-to-state stable to actuator errors.

[1]  Yuan Wang,et al.  Stabilization in spite of matched unmodeled dynamics and an equivalent definition of input-to-state stability , 1996, Math. Control. Signals Syst..

[2]  V. Jurdjevic,et al.  Controllability and stability , 1978 .

[3]  Eduardo Sontag,et al.  On Finite-Gain Stabilizability of Linear Systems Subject to Input Saturation , 1996 .

[4]  Jean-Baptiste Pomet,et al.  Esaim: Control, Optimisation and Calculus of Variations Control Lyapunov Functions for Homogeneous " Jurdjevic-quinn " Systems , 2022 .

[5]  Eduardo D. Sontag,et al.  Global Asymptotic Controllability Implies Input-to-State Stabilization , 2003, SIAM J. Control. Optim..

[6]  David Angeli,et al.  A characterization of integral input-to-state stability , 2000, IEEE Trans. Autom. Control..

[7]  A. Teel Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem , 1998, IEEE Trans. Autom. Control..

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  David Angeli,et al.  Input-to-state stability of PD-controlled robotic systems , 1999, Autom..

[10]  Miroslav Krstic,et al.  Stabilization of stochastic nonlinear systems driven by noise of unknown covariance , 2001, IEEE Trans. Autom. Control..

[11]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[12]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[13]  Eduardo Sontag A universal construction of Artstein's theorem on nonlinear stabilization , 1989 .

[14]  Randy A. Freeman,et al.  Robust Nonlinear Control Design , 1996 .

[15]  Hai-Bo Ji,et al.  Adaptive Stabilization for Stochastic Parametric-Strict-Feedback Systems with Wiener Noises of Unknown Covariance , 2003, Int. J. Syst. Sci..

[16]  Eduardo D. Sontag,et al.  Mathematical Control Theory Second Edition , 1998 .

[17]  Mrdjan Jankovic,et al.  Control Lyapunov-Razumikhin functions and robust stabilization of time delay systems , 2001, IEEE Trans. Autom. Control..

[18]  A. Schaft L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences 218 , 1996 .

[19]  Feng Lin,et al.  Robust Control of Nonlinear Systems , 2007 .

[20]  Sabine Mondié,et al.  Global stabilization of oscillators with bounded delayed input , 2004, Syst. Control. Lett..

[21]  Dragan Nesic,et al.  Strong Lyapunov functions for systems satisfying the conditions of La salle , 2004, IEEE Transactions on Automatic Control.

[22]  David Angeli,et al.  A Unifying Integral ISS Framework for Stability of Nonlinear Cascades , 2001, SIAM J. Control. Optim..

[23]  P.V. Kokotovic,et al.  Adaptive nonlinear output-feedback schemes with Marino-Tomei controller , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[24]  Eduardo D. Sontag,et al.  Asymptotic Controllability and Input-to-State Stabilization: The Effect of Actuator Errors , 2003 .

[25]  Alberto Isidori,et al.  Nonlinear Control Systems II , 1999 .

[26]  W. Dayawansa,et al.  Global stabilization by output feedback: examples and counterexamples , 1994 .

[27]  L. Praly,et al.  Strict Lyapunov functions for feedforward systems and applications , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).