A MULTIWAVELENGTH STUDY OF A SAMPLE OF 70 μm SELECTED GALAXIES IN THE COSMOS FIELD. II. THE ROLE OF MERGERS IN GALAXY EVOLUTION

We analyze the morphological properties of a large sample of 1503 70 μm selected galaxies in the COSMOS field spanning the redshift range 0.01 < z < 3.5 with a median redshift of 0.5 and an infrared luminosity range of 108 < LIR(8 − 1000 μm)< 1014L☉ with a median luminosity of 1011.4 L☉. In general, these galaxies are massive, with a stellar mass range of 1010–1012 M☉, and luminous, with −25 < MK < −20. We find a strong correlation between the fraction of major mergers and LIR, with the fraction at the highest luminosity (LIR > 1012 L☉) being up to ∼50%. We also find that the fraction of spirals drops dramatically with LIR. Minor mergers likely play a role in boosting the infrared luminosity for sources with low luminosities (LIR < 1011.5 L☉). The precise fraction of mergers in any given LIR bin varies by redshift due to sources at z > 1 being difficult to classify and subject to the effects of bandpass shifting; therefore, these numbers can only be considered lower limits. At z < 1, where the morphological classifications are most robust, major mergers clearly dominate the ULIRG population (∼50%–80%) and are important for the LIRG population (∼25%–40%). At z > 1, the fraction of major mergers is lower, but is at least 30%–40% for ULIRGs. In a comparison of our visual classifications with several automated classification techniques we find general agreement; however, the fraction of identified mergers is underestimated due to automated classification methods being sensitive to only certain timescales of a major merger. Although the general morphological trends agree with what has been observed for local (U)LIRGs, the fraction of major mergers is slightly lower than seen locally. This is in part due to the difficulty of identifying merger signatures at high redshift. The distribution of the U − V color of the galaxies in our sample peaks in the green valley (〈U − V〉 = 1.1) with a large spread at bluer and redder colors and with the major mergers peaking more strongly in the green valley than the rest of the morphological classes. We argue that, given the number of major gas-rich mergers observed and the relatively short timescale that they would be observable in the (U)LIRG phase, it is plausible for the observed red sequence of massive ellipticals (<1012 M☉) to have been formed entirely by gas-rich major mergers.

[1]  M. Yun,et al.  Smith ScholarWorks Smith ScholarWorks Color-Magnitude Relation and Morphology of Low-Redshift Color-Magnitude Relation and Morphology of Low-Redshift ULIRGs in Sloan Digital Sky Survey ULIRGs in Sloan Digital Sky Survey , 2018 .

[2]  D. Thompson,et al.  GALAXY STELLAR MASS ASSEMBLY BETWEEN 0.2 < z < 2 FROM THE S-COSMOS SURVEY , 2009, 0903.0102.

[3]  D. Thompson,et al.  A MULTIWAVELENGTH STUDY OF A SAMPLE OF 70 μm SELECTED GALAXIES IN THE COSMOS FIELD. I. SPECTRAL ENERGY DISTRIBUTIONS AND LUMINOSITIES , 2009, 0911.4515.

[4]  P. Hopkins,et al.  Mergers, active galactic nuclei and ‘normal’ galaxies: contributions to the distribution of star formation rates and infrared luminosity functions , 2009, 0911.1131.

[5]  H. Rix,et al.  MAJOR MERGING: THE WAY TO MAKE A MASSIVE, PASSIVE GALAXY , 2009, 0910.4018.

[6]  CEA-Saclay,et al.  Deep Spitzer 24 μm COSMOS Imaging. I. The Evolution of Luminous Dusty Galaxies—Confronting the Models , 2009, 0909.4303.

[7]  V. Smolčić THE RADIO AGN POPULATION DICHOTOMY: GREEN VALLEY SEYFERTS VERSUS RED SEQUENCE LOW-EXCITATION ACTIVE GALACTIC NUCLEI , 2009, 0905.2989.

[8]  P. Hopkins,et al.  COLOR DISTRIBUTIONS, NUMBER, AND MASS DENSITIES OF MASSIVE GALAXIES AT 1.5 < z < 3: COMPARING OBSERVATIONS WITH MERGER SIMULATIONS , 2009, 0905.2411.

[9]  J. Trump,et al.  THE COSMOS ACTIVE GALACTIC NUCLEUS SPECTROSCOPIC SURVEY. I. XMM-NEWTON COUNTERPARTS , 2009 .

[10]  B. Weiner,et al.  SUBMITTED TO APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 MID-IR LUMINOSITIES AND UV/OPTICAL STAR FORMATION RATES AT Z < 1.4 , 2009 .

[11]  L. Kewley,et al.  GOALS: The Great Observatories All-Sky LIRG Survey , 2009, 0904.4498.

[12]  A. Dey,et al.  HIGH-REDSHIFT DUST OBSCURED GALAXIES: A MORPHOLOGY–SPECTRAL ENERGY DISTRIBUTION CONNECTION REVEALED BY KECK ADAPTIVE OPTICS , 2009, 0904.1231.

[13]  H. Rix,et al.  HISTORY OF GALAXY INTERACTIONS AND THEIR IMPACT ON STAR FORMATION OVER THE LAST 7 Gyr FROM GEMS , 2009, 0903.3700.

[14]  G. Rieke,et al.  ROLE OF GALAXY MERGERS IN COSMIC STAR FORMATION HISTORY , 2009, 0903.3035.

[15]  A. Afonso-Luis,et al.  SPITZER 70 AND 160 μm OBSERVATIONS OF THE COSMOS FIELD , 2009, 0902.3273.

[16]  Michael E. Anderson,et al.  HOST GALAXIES, CLUSTERING, EDDINGTON RATIOS, AND EVOLUTION OF RADIO, X-RAY, AND INFRARED-SELECTED AGNs , 2009, 0901.4121.

[17]  B. Magnelli,et al.  The 0.4 < z < 1.3 star formation history of the Universe as viewed in the far-infrared , 2009, 0901.1543.

[18]  K. Schawinski,et al.  DO MODERATE-LUMINOSITY ACTIVE GALACTIC NUCLEI SUPPRESS STAR FORMATION? , 2009, 0901.1663.

[19]  B. Garilli,et al.  ONGOING AND CO-EVOLVING STAR FORMATION IN zCOSMOS GALAXIES HOSTING ACTIVE GALACTIC NUCLEI , 2008, 0810.3653.

[20]  Ralf Bender,et al.  STRUCTURE AND FORMATION OF ELLIPTICAL AND SPHEROIDAL GALAXIES , 2008, 0810.1681.

[21]  M. Franx,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 DETECTION OF QUIESCENT GALAXIES IN A BICOLOR SEQUENCE FROM Z = 0 − 2 , 2022 .

[22]  S. Kaviraj An ultraviolet study of nearby luminous infrared galaxies: star formation histories and the role of AGN , 2007, 0801.0127.

[23]  J. Trump,et al.  The COSMOS AGN Spectroscopic Survey I: XMM Counterparts , 2008, 0811.3977.

[24]  A. Dey,et al.  HST Morphologies of z ~ 2 Dust-Obscured Galaxies II: Bump Sources , 2011, 1103.3527.

[25]  D. Thompson,et al.  COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg2 , 2008, 0809.2101.

[26]  D. Thompson,et al.  PHOTOMETRIC REDSHIFT AND CLASSIFICATION FOR THE XMM–COSMOS SOURCES , 2008, 0809.2098.

[27]  Spitzer Science Center,et al.  MORPHOLOGIES OF HIGH-REDSHIFT, DUST-OBSCURED GALAXIES FROM KECK LASER GUIDE STAR ADAPTIVE OPTICS , 2008, 0807.1115.

[28]  Joel R. Primack,et al.  Galaxy merger morphologies and time-scales from simulations of equal-mass gas-rich disc mergers , 2008, 0805.1246.

[29]  K. Jahnke,et al.  FERENGI: Redshifting Galaxies from SDSS to GEMS, STAGES, and COSMOS , 2008, 0812.1022.

[30]  J. Surace,et al.  HST NICMOS Imaging of z ~ 2, 24 μm-selected Ultraluminous Infrared Galaxies , 2008, 0802.1050.

[31]  J. Newman,et al.  The role of AGN in the colour transformation of galaxies at redshifts z≈ 1 , 2008, 0801.2160.

[32]  Arjun Dey,et al.  A Significant Population of Very Luminous Dust-Obscured Galaxies at Redshift z ~ 2 , 2008, 0801.1860.

[33]  C. Conselice,et al.  The structures of distant galaxies – I. Galaxy structures and the merger rate to z∼ 3 in the Hubble Ultra-Deep Field , 2007, 0711.2333.

[34]  W. Brandt,et al.  The Evolution of AGN Host Galaxies: From Blue to Red and the Influence of Large-Scale Structures , 2007, 0709.3455.

[35]  A. Hopkins,et al.  The Evolution of Galaxy Mergers and Morphology at z < 1.2 in the Extended Groth Strip , 2006, astro-ph/0602088.

[36]  I. Baldry,et al.  Are galaxies with active galactic nuclei a transition population , 2007, 0710.1497.

[37]  K. Schawinski,et al.  Observational evidence for AGN feedback in early-type galaxies , 2007, 0709.3015.

[38]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-Ray Selected Active Galactic Nuclei in the XMM-Newton Medium Deep Survey , 2007 .

[39]  B. Garilli,et al.  The SWIRE-VVDS-CFHTLS surveys: stellar mass assembly over the last 10 Gyr. Evidence for a major build up of the red sequence between z = 2 and z = 1 , 2007, 0705.2438.

[40]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[41]  K. Sheth,et al.  The Effects of Environment on Morphological Evolution at 0 < z < 1.2 in the COSMOS Survey , 2007 .

[42]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-ray selected AGNs in the XMDS Survey , 2007, astro-ph/0703255.

[43]  D. Calzetti,et al.  The COSMOS Survey: Hubble Space Telescope Advanced Camera for Surveys Observations and Data Processing , 2007, astro-ph/0703095.

[44]  P. McCarthy,et al.  The Gemini Deep Deep Survey. VIII. When Did Early-Type Galaxies Form? , 2007, astro-ph/0701779.

[45]  G. Helou,et al.  The Infrared Luminosity Function of Galaxies at Redshifts z = 1 and z ~ 2 in the GOODS Fields , 2007, astro-ph/0701283.

[46]  C. Conselice,et al.  The Role of Galaxy Interactions and Mergers in Star Formation at z ≤ 1.3: Mid-Infrared Properties in the Spitzer First Look Survey , 2007, astro-ph/0701040.

[47]  C. Conselice,et al.  Dependence of Galaxy Structure on Rest-Frame Wavelength and Galaxy Type , 2006, astro-ph/0612558.

[48]  D. Calzetti,et al.  COSMOS: Hubble Space Telescope Observations , 2006, astro-ph/0612306.

[49]  P. P. van der Werf,et al.  What Do We Learn from IRAC Observations of Galaxies at 2 < z < 3.5? , 2006, astro-ph/0609548.

[50]  J. Newman,et al.  AEGIS: The Color-Magnitude Relation for X-Ray-selected Active Galactic Nuclei , 2006, astro-ph/0607270.

[51]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview* , 2006, astro-ph/0612305.

[52]  S. Maddox,et al.  zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < z < 3 in the COSMOS Field , 2006, astro-ph/0612291.

[53]  C. Conselice The fundamental properties of galaxies and a new galaxy classification system , 2006, astro-ph/0610016.

[54]  A. Connolly,et al.  The Deep Evolutionary Exploratory Probe 2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2006 .

[55]  J. Trump,et al.  Magellan Spectroscopy of AGN Candidates in the COSMOS Field , 2006, astro-ph/0606016.

[56]  J. Wang,et al.  Luminous Infrared Galaxies in the Local Universe , 2006, astro-ph/0603574.

[57]  G. Rieke,et al.  Morphology of Spitzer 24 μm Detected Galaxies in the UDF: The Links between Star Formation and Galaxy Morphology , 2006, astro-ph/0603453.

[58]  Chien Y. Peng,et al.  Dry Mergers in GEMS: The Dynamical Evolution of Massive Early-Type Galaxies , 2005, astro-ph/0506425.

[59]  E. Floc’h,et al.  Optical Morphology Evolution of Infrared Luminous Galaxies in GOODS-N , 2005, astro-ph/0509037.

[60]  Tucson,et al.  Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 ≲ z ≲ 1* , 2005, astro-ph/0506462.

[61]  A. Connolly,et al.  The DEEP2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2005, astro-ph/0506041.

[62]  A. Szalay,et al.  Galaxy Luminosity Functions to z~1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation , 2005, astro-ph/0506044.

[63]  T. Goto Optical properties of 4248 IRAS galaxies , 2005, astro-ph/0504080.

[64]  H. Rix,et al.  Toward an Understanding of the Rapid Decline of the Cosmic Star Formation Rate , 2005, astro-ph/0502246.

[65]  A. Cimatti,et al.  The evolution of the galaxy B-band rest-frame morphology to z ∼ 2: new clues from the K20/GOODS sample , 2004, astro-ph/0411768.

[66]  A. Szalay,et al.  The DEEP Groth Strip Galaxy Redshift Survey. III. Redshift Catalog and Properties of Galaxies , 2004, astro-ph/0411128.

[67]  Christian Wolf,et al.  Colors of Active Galactic Nucleus Host Galaxies at 0.5 < z < 1.1 from the GEMS Survey , 2004 .

[68]  H. Rix,et al.  Colors of AGN host galaxies at 0.5 , 2004, astro-ph/0403645.

[69]  F. Hammer,et al.  HST/WFPC2 morphologies and color maps of distant luminous infrared galaxies , 2004, astro-ph/0403476.

[70]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[71]  Heidelberg,et al.  Nearly 5000 Distant Early-Type Galaxies in COMBO-17: A Red Sequence and Its Evolution since z ~ 1 , 2003, astro-ph/0303394.

[72]  P. Madau,et al.  A New Nonparametric Approach to Galaxy Morphological Classification , 2003, astro-ph/0311352.

[73]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[74]  J. Surace,et al.  The IRAS Revised Bright Galaxy Sample , 2003, astro-ph/0306263.

[75]  M. Bershady,et al.  A Direct Measurement of Major Galaxy Mergers at z ≲ 3 , 2003, astro-ph/0306106.

[76]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[77]  C. Conselice The Relationship between Stellar Light Distributions of Galaxies and Their Formation Histories , 2003, astro-ph/0303065.

[78]  University of Toronto,et al.  A New Approach to Galaxy Morphology. I. Analysis of the Sloan Digital Sky Survey Early Data Release , 2003, astro-ph/0301239.

[79]  D. York,et al.  The Overdensities of Galaxy Environments as a Function of Luminosity and Color , 2002, astro-ph/0212085.

[80]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[81]  S. Veilleux,et al.  Optical and Near-Infrared Imaging of the IRAS 1 Jy Sample of Ultraluminous Infrared Galaxies. II. The Analysis , 2002, astro-ph/0207373.

[82]  V. Narayanan,et al.  Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data , 2001, astro-ph/0107201.

[83]  M. Bershady,et al.  Structural and Photometric Classification of Galaxies. I. Calibration Based on a Nearby Galaxy Sample , 2000, astro-ph/0002262.

[84]  M. Bershady,et al.  The Asymmetry of Galaxies: Physical Morphology for Nearby and High-Redshift Galaxies , 1999, astro-ph/9907399.

[85]  O. Fèvre,et al.  15 Micron Infrared Space Observatory Observations of the 1415+52 Canada-France Redshift Survey Field: The Cosmic Star Formation Rate as Derived from Deep Ultraviolet, Optical, Mid-Infrared, and Radio Photometry , 1999 .

[86]  J. Barnes,et al.  Galaxy Interactions at Low and High Redshift , 1999 .

[87]  Karl Glazebrook,et al.  The morphologies of distant galaxies. II. Classifications from the Hubble Space Telescope medium deep survey , 1996 .

[88]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[89]  Edward M. Murphy,et al.  Galactic H i Column Densities toward Quasars and Active Galactic Nuclei , 1996 .

[90]  L. Hernquist,et al.  Gasdynamics and starbursts in major mergers , 1995, astro-ph/9512099.

[91]  D. Sanders,et al.  The IRAS 1 Jy Survey of Ultraluminous Infrared Galaxies. I. The Sample and Luminosity Function , 1998, astro-ph/9806148.

[92]  S. Veilleux,et al.  Optical Spectroscopy of Luminous Infrared Galaxies II. Analysis of the Nuclear and long-Slit Data , 1995 .

[93]  Francisco Valdes,et al.  The Morphologies of Distant Galaxies. I. an Automated Classification System , 1994 .

[94]  Patrick Seitzer,et al.  Correlations between UBV colors and fine structure in E and S0 galaxies: A First attempt at dating ancient merger events , 1992 .

[95]  L. Hernquist,et al.  Dynamics of Interacting Galaxies , 1992 .

[96]  G. Neugebauer,et al.  The IRAS Bright Galaxy Sample. IV. Complete IRAS observations , 1989 .

[97]  G. Neugebauer,et al.  Warm ultraluminous galaxies in the IRAS survey - The transition from galaxy to quasar? , 1988 .

[98]  G. Neugebauer,et al.  Ultraluminous infrared galaxies and the origin of quasars , 1988 .

[99]  Judith S. Young,et al.  Detection of CO(1-0) emission and optical imaging of the Seyfert galaxy/QSO Markarian 231 , 1987 .

[100]  S. Kent,et al.  CCD surface photometry of field galaxies. II: Bulge/disk decompositions , 1985 .

[101]  B. J. Bok,et al.  Star Formation , 2021, Introduction to the Interstellar Medium.

[102]  A. Toomre,et al.  Galactic Bridges and Tails , 1972 .