Low-flow CO2 removal in combination with renal replacement therapy effectively reduces ventilation requirements in hypercapnic patients: a pilot study

[1]  S. Jaber,et al.  Feasibility and safety of low-flow extracorporeal CO2 removal managed with a renal replacement platform to enhance lung-protective ventilation of patients with mild-to-moderate ARDS , 2018, Critical Care.

[2]  D. Brodie,et al.  Impact of membrane lung surface area and blood flow on extracorporeal CO2 removal during severe respiratory acidosis , 2017, Intensive Care Medicine Experimental.

[3]  F. Rapetti,et al.  The future of mechanical ventilation: lessons from the present and the past , 2017, Critical Care.

[4]  M. Bailey,et al.  Effects of Hypercapnia and Hypercapnic Acidosis on Hospital Mortality in Mechanically Ventilated Patients* , 2017, Critical care medicine.

[5]  S. Braune,et al.  [Extracorporeal lung support]. , 2017, Medizinische Klinik, Intensivmedizin und Notfallmedizin.

[6]  S. Kluge,et al.  Extrakorporale Verfahren zur Lungenunterstützung , 2017, Medizinische Klinik - Intensivmedizin und Notfallmedizin.

[7]  T. Staudinger [Extracorporeal membrane oxygenation : System selection, (contra)indications, and management]. , 2017, Medizinische Klinik, Intensivmedizin und Notfallmedizin.

[8]  J. Sznajder,et al.  Severe hypercapnia and outcome of mechanically ventilated patients with moderate or severe acute respiratory distress syndrome , 2017, Intensive Care Medicine.

[9]  J. Fraser,et al.  The inflammatory response to extracorporeal membrane oxygenation (ECMO): a review of the pathophysiology , 2016, Critical Care.

[10]  L. Gattinoni,et al.  Ventilator-related causes of lung injury: the mechanical power , 2016, Intensive Care Medicine.

[11]  T. Staudinger,et al.  The feasibility and safety of extracorporeal carbon dioxide removal to avoid intubation in patients with COPD unresponsive to noninvasive ventilation for acute hypercapnic respiratory failure (ECLAIR study): multicentre case–control study , 2016, Intensive Care Medicine.

[12]  M. Balaan,et al.  Acute Respiratory Distress Syndrome , 2016, Critical care nursing quarterly.

[13]  M. Westhoff,et al.  [Hypercapnic respiratory failure. Pathophysiology, indications for mechanical ventilation and management]. , 2016, Medizinische Klinik, Intensivmedizin und Notfallmedizin.

[14]  C. Edelstein,et al.  Mechanisms and mediators of lung injury after acute kidney injury , 2016, Nature Reviews Nephrology.

[15]  D. Spaite,et al.  Extracorporeal membrane oxygenation (ECMO) for critically ill adults in the emergency department: history, current applications, and future directions , 2015, Critical Care.

[16]  T. Signouret,et al.  Safety and Efficacy of Combined Extracorporeal Co2 Removal and Renal Replacement Therapy in Patients With Acute Respiratory Distress Syndrome and Acute Kidney Injury: The Pulmonary and Renal Support in Acute Respiratory Distress Syndrome Study* , 2015, Critical care medicine.

[17]  W. Sperr,et al.  A novel pump-driven veno-venous gas exchange system during extracorporeal CO2-removal , 2015, Intensive Care Medicine.

[18]  Arthur S Slutsky,et al.  Novel CO2 removal device driven by a renal-replacement system without hemofilter. A first step experimental validation. , 2015, Anaesthesia, critical care & pain medicine.

[19]  D. Murphy,et al.  Extracorporeal membrane oxygenation-hemostatic complications. , 2015, Transfusion medicine reviews.

[20]  P. Pelosi,et al.  Effects of Ultraprotective Ventilation, Extracorporeal Carbon Dioxide Removal, and Spontaneous Breathing on Lung Morphofunction and Inflammation in Experimental Severe Acute Respiratory Distress Syndrome , 2015, Anesthesiology.

[21]  C. Willam,et al.  [Lung and kidney failure. Pathogenesis, interactions, and therapy]. , 2015, Medizinische Klinik, Intensivmedizin und Notfallmedizin.

[22]  C. Willam,et al.  Lungen- und Nierenversagen , 2015, Medizinische Klinik - Intensivmedizin und Notfallmedizin.

[23]  P. Trerotoli,et al.  Low Respiratory Rate Plus Minimally Invasive Extracorporeal Co2 Removal Decreases Systemic and Pulmonary Inflammatory Mediators in Experimental Acute Respiratory Distress Syndrome* , 2014, Critical care medicine.

[24]  Arthur S Slutsky,et al.  Ventilator-induced lung injury. , 2013, The New England journal of medicine.

[25]  M. Antonelli,et al.  A meta-analysis of complications and mortality of extracorporeal membrane oxygenation. , 2013, Critical care and resuscitation : journal of the Australasian Academy of Critical Care Medicine.

[26]  K. Eckardt,et al.  Low-flow CO2 removal integrated into a renal-replacement circuit can reduce acidosis and decrease vasopressor requirements , 2013, Critical Care.

[27]  Is automated peritoneal lavage a better way than an endovascular device to induce mild therapeutic hypothermia after resuscitated cardiac arrest? , 2013, Critical Care.

[28]  Arthur S Slutsky,et al.  Lower tidal volume strategy (≈3 ml/kg) combined with extracorporeal CO2 removal versus ‘conventional’ protective ventilation (6 ml/kg) in severe ARDS , 2013, Intensive Care Medicine.

[29]  J. Sznajder,et al.  Hypercapnia: a nonpermissive environment for the lung. , 2012, American journal of respiratory cell and molecular biology.

[30]  Arthur S Slutsky,et al.  Acute Respiratory Distress Syndrome The Berlin Definition , 2012 .

[31]  D. Henzler,et al.  Effects of hypercapnia and hypercapnic acidosis on attenuation of ventilator-associated lung injury. , 2011, Minerva anestesiologica.

[32]  L. Cancio,et al.  Respiratory dialysis: reduction in dependence on mechanical ventilation by venovenous extracorporeal CO2 removal. , 2011, Critical care medicine.

[33]  J. Laffey,et al.  Can 'permissive' hypercapnia modulate the severity of sepsis-induced ALI/ARDS? , 2011, Critical care.

[34]  J. Laffey,et al.  Hypercapnia and Acidosis in Sepsis: A Double-edged Sword? , 2010, Anesthesiology.

[35]  Diana Elbourne,et al.  Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial , 2009, The Lancet.

[36]  V. Ranieri,et al.  Tidal Volume Lower than 6 ml/kg Enhances Lung Protection: Role of Extracorporeal Carbon Dioxide Removal , 2009, Anesthesiology.

[37]  Arthur S Slutsky,et al.  Pumpless extracorporeal removal of carbon dioxide combined with ventilation using low tidal volume and high positive end‐expiratory pressure in a patient with severe acute respiratory distress syndrome , 2009, Anaesthesia.

[38]  M. Matthay,et al.  Advances in critical care for the nephrologist: acute lung injury/ARDS. , 2008, Clinical journal of the American Society of Nephrology : CJASN.

[39]  Giovanni Gandini,et al.  Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. , 2007, American journal of respiratory and critical care medicine.

[40]  G. Bertolini,et al.  Efficacy and safety of a low-flow veno-venous carbon dioxide removal device: results of an experimental study in adult sheep , 2006, Critical care.

[41]  F. Gordo,et al.  Prospective randomized trial comparing pressure-controlled ventilation and volume-controlled ventilation in ARDS. For the Spanish Lung Failure Collaborative Group. , 2000, Chest.

[42]  D. Schoenfeld,et al.  Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. , 2000, The New England journal of medicine.

[43]  F. Gordo,et al.  Prospective randomized trial comparing pressure-controlled ventilation and volume-controlled ventilation in ARDS. For the Spanish Lung Failure Collaborative Group. , 2000, Chest.

[44]  C. Carvalho,et al.  Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. , 1998, The New England journal of medicine.

[45]  L. Gattinoni,et al.  Control of intermittent positive pressure breathing (IPPB) by extracorporeal removal of carbon dioxide. , 1978, British journal of anaesthesia.