A diffusion LMS strategy for parameter estimation in noisy regressor applications

We study distributed least-mean square (LMS) estimation problems over adaptive networks, where nodes cooperatively work to estimate and track common parameters of an unknown system. We consider a scenario where the input and output response signals of the unknown system are both contaminated by measurement noise. In this case, if standard distributed estimation is performed without considering the effect of regression noise, then the resulting parameter estimates will be biased. To resolve this problem, we propose a distributed LMS algorithm that achieves asymptotically unbiased estimates via diffusion adaptation. We analyze the performance of the proposed algorithm and provide computer experiments to illustrate its behavior.

[1]  Chun-Bo Feng,et al.  Unbiased parameter estimation of linear systems in the presence of input and output noise , 1989 .

[2]  Ali H. Sayed,et al.  Adaptive Filters , 2008 .

[3]  Carlos E. Davila,et al.  An efficient recursive total least squares algorithm for FIR adaptive filtering , 1994, IEEE Trans. Signal Process..

[4]  Ali H. Sayed,et al.  Diffusion Bias-Compensated RLS Estimation Over Adaptive Networks , 2011, IEEE Transactions on Signal Processing.

[5]  Ali H. Sayed,et al.  Diffusion LMS Strategies for Distributed Estimation , 2010, IEEE Transactions on Signal Processing.

[6]  Da-Zheng Feng,et al.  Modified RLS algorithm for unbiased estimation of FIR system with input and output noise , 2000 .

[7]  K. Wada,et al.  On-line modified least-squares parameter estimation of linear discrete dynamic systems , 1977 .

[8]  Zheng Bao,et al.  Total least mean squares algorithm , 1998, IEEE Trans. Signal Process..

[9]  Ali H. Sayed,et al.  Diffusion Adaptation Over Networks Under Imperfect Information Exchange and Non-Stationary Data , 2011, IEEE Transactions on Signal Processing.

[10]  Ali H. Sayed,et al.  Diffusion Adaptation over Networks , 2012, ArXiv.

[11]  Sang Woo Kim,et al.  Consistent normalized least mean square filtering with noisy data matrix , 2005, IEEE Transactions on Signal Processing.

[12]  Ali H. Sayed,et al.  Diffusion Least-Mean Squares Over Adaptive Networks: Formulation and Performance Analysis , 2008, IEEE Transactions on Signal Processing.

[13]  K. Wada,et al.  On bias compensated least squares method for noisy input-output system identification , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[14]  Marc Moonen,et al.  Consensus-Based Distributed Total Least Squares Estimation in Ad Hoc Wireless Sensor Networks , 2011, IEEE Transactions on Signal Processing.

[15]  H. C. So,et al.  Modified LMS algorithm for unbiased impulse response estimation in nonstationary noise , 1999 .