Advanced computation of steady-state fluid flow in Discrete Fracture-Matrix models: FEM–BEM and VEM–VEM fracture-block coupling

In this note the issue of fluid flow computation in a Discrete Fracture-Matrix (DFM) model is addressed. In such a model, a network of percolative fractures delimits porous matrix blocks. Two frameworks are proposed for the coupling between the two media. First, a FEM–BEM technique is considered, in which finite elements on non-conforming grids are used on the fractures, whereas a boundary element method is used on the blocks; the coupling is pursued by a PDE-constrained optimization formulation of the problem. Second, a VEM–VEM technique is considered, in which a 2D and a 3D virtual element method are used on the fractures and on the blocks, respectively, taking advantage of the flexibility of VEM in using arbitrary meshes in order to ease the meshing process and the consequent enforcement of the matching conditions on fractures and blocks.

[1]  Satish Karra,et al.  Particle tracking approach for transport in three-dimensional discrete fracture networks , 2015, Computational Geosciences.

[2]  Stefano Berrone,et al.  A PDE-Constrained Optimization Formulation for Discrete Fracture Network Flows , 2013, SIAM J. Sci. Comput..

[3]  Luca Formaggia,et al.  A Hybrid High-Order Method for Darcy Flows in Fractured Porous Media , 2017, SIAM J. Sci. Comput..

[4]  Alessio Fumagalli,et al.  Dual Virtual Element Method for Discrete Fractures Networks , 2016, SIAM J. Sci. Comput..

[5]  C. D'Angelo,et al.  A mixed finite element method for Darcy flow in fractured porous media with non-matching grids , 2012 .

[6]  Stefano Berrone,et al.  On Simulations of Discrete Fracture Network Flows with an Optimization-Based Extended Finite Element Method , 2013, SIAM J. Sci. Comput..

[7]  Alessandro Russo,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014, 1506.07328.

[8]  Mayur Pal,et al.  Control-volume distributed multi-point flux approximation coupled with a lower-dimensional fracture model , 2015, J. Comput. Phys..

[9]  Stefano Berrone,et al.  A residual a posteriori error estimate for the Virtual Element Method , 2017 .

[10]  S. Mukherjee,et al.  Boundary element techniques: Theory and applications in engineering , 1984 .

[11]  C. Brebbia,et al.  Boundary Element Techniques , 1984 .

[12]  Roland Masson,et al.  Gradient discretization of hybrid dimensional Darcy flows in fractured porous media , 2014, Numerische Mathematik.

[13]  J. E. Warren,et al.  The Behavior of Naturally Fractured Reservoirs , 1963 .

[14]  Stefano Berrone,et al.  A hybrid mortar virtual element method for discrete fracture network simulations , 2016, J. Comput. Phys..

[15]  Jérôme Jaffré,et al.  Model reduction and discretization using hybrid finite volumes for flow in porous media containing faults , 2016, Computational Geosciences.

[16]  Stefano Berrone,et al.  Orthogonal polynomials in badly shaped polygonal elements for the Virtual Element Method , 2017 .

[17]  Anna Scotti,et al.  MIMETIC FINITE DIFFERENCE APPROXIMATION OF FLOWS IN FRACTURED POROUS MEDIA , 2016 .

[18]  Vincent Martin,et al.  Modeling fractures as interfaces with nonmatching grids , 2012, Computational Geosciences.

[19]  Mary F. Wheeler,et al.  Mimetic Finite Differences for Flow in Fractures from Microseismic Data , 2015, ANSS 2015.

[20]  Stefano Berrone,et al.  A globally conforming method for solving flow in discrete fracture networks using the Virtual Element Method , 2016 .

[21]  Jean-Claude Roegiers,et al.  A nonlinear dual-porosity model , 1994 .

[22]  Stefano Berrone,et al.  Simulation of the Steady-State Flow in Discrete Fracture Networks with Non-Conforming Meshes and Extended Finite Elements , 2014, Rock Mechanics and Rock Engineering.

[23]  Stefano Berrone,et al.  A Posteriori Error Estimate for a PDE-Constrained Optimization Formulation for the Flow in DFNs , 2016, SIAM J. Numer. Anal..

[24]  Stefano Berrone,et al.  The Virtual Element Method for Underground Flow Simulations in Fractured Media , 2016 .

[25]  Stefano Berrone,et al.  Flow simulations in porous media with immersed intersecting fractures , 2017, J. Comput. Phys..

[26]  Stefano Berrone,et al.  Towards effective flow simulations in realistic discrete fracture networks , 2016, J. Comput. Phys..

[27]  Stefano Berrone,et al.  The virtual element method for discrete fracture network simulations , 2014 .

[28]  J. Andersson,et al.  Steady state fluid response in fractured rock: A boundary element solution for a coupled, discrete fracture continuum model , 1983 .

[29]  Gianmarco Manzini,et al.  The Mimetic Finite Difference Method for Elliptic Problems , 2014 .

[30]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[31]  Alessio Fumagalli,et al.  A numerical method for two-phase flow in fractured porous media with non-matching grids , 2013 .

[32]  Alessio Fumagalli,et al.  Benchmarks for single-phase flow in fractured porous media , 2017, ArXiv.

[33]  Patrick Jenny,et al.  A hierarchical fracture model for the iterative multiscale finite volume method , 2011, J. Comput. Phys..

[34]  I. Aavatsmark,et al.  An Introduction to Multipoint Flux Approximations for Quadrilateral Grids , 2002 .

[35]  J. R. Gilman,et al.  6 – Multiphase Flow in Fractured Petroleum Reservoirs , 1993 .

[36]  Stefano Berrone,et al.  An optimization approach for large scale simulations of discrete fracture network flows , 2014, J. Comput. Phys..

[37]  Giovanni Battista Barla,et al.  A mixed solution for two-dimensional unsteady flow in fractured porous media , 1997 .

[38]  Jan M. Nordbotten,et al.  An efficient multi-point flux approximation method for Discrete Fracture-Matrix simulations , 2012, J. Comput. Phys..

[39]  Franco Brezzi,et al.  The Hitchhiker's Guide to the Virtual Element Method , 2014 .

[40]  Stefano Berrone,et al.  A Parallel Solver for Large Scale DFN Flow Simulations , 2015, SIAM J. Sci. Comput..

[41]  Richard S. Falk,et al.  Basic principles of mixed Virtual Element Methods , 2014 .

[42]  Satish Karra,et al.  dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport , 2015, Comput. Geosci..

[43]  Philippe Angot,et al.  ASYMPTOTIC AND NUMERICAL MODELLING OF FLOWS IN FRACTURED POROUS MEDIA , 2009 .

[44]  Vincent Martin,et al.  Modeling Fractures and Barriers as Interfaces for Flow in Porous Media , 2005, SIAM J. Sci. Comput..

[45]  R. Helmig,et al.  A mixed-dimensional finite volume method for two-phase flow in fractured porous media , 2006 .

[46]  Lourenço Beirão da Veiga,et al.  Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..

[47]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[48]  Roland Masson,et al.  Gradient discretization of hybrid dimensional Darcy flows in fractured porous media , 2015, Numerische Mathematik.

[49]  Ahmed Alsaedi,et al.  Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..

[50]  Alessio Fumagalli,et al.  Conforming, non-conforming and non-matching discretization couplings in discrete fracture network simulations , 2018, J. Comput. Phys..