Review on miniaturized paraffin phase change actuators, valves, and pumps

During the last 15 years, miniaturized paraffin actuation has evolved through the need of a simple actuation principle, still able to deliver large strokes and high actuation forces at small scales. This is achieved by the large and rather incompressible volume expansion associated with the solid-to-liquid phase transition of paraffin. The common approach has been to encapsulate the paraffin by a stiff surrounding that directs the volume expansion toward a flexible membrane, which deflects in a directed stroke. However, a number of alternative methods have also been used in the literature. The most common applications to this date have been switches, positioning actuators, and microfluidic valves and pumps. This review will treat the historical background, as well as the fundamentals in paraffin actuation, including material properties of paraffin. Besides reviewing the three major groups of paraffin actuator applications—actuators, valves, and pumps—the modelling done on paraffin actuation will be explored. Furthermore, a section focusing on fabrication of paraffin microactuators is also included. The review ends with conclusions and outlook of the field, identifying unexplored potential of paraffin actuation.

[1]  Kiichi Tsuchiya,et al.  A Thermal-Expansion-Type Microactuator with Paraffin as the Expansive Material (Basic Performance of a Prototype Linear Actuator) , 1997 .

[2]  K. Hjort,et al.  Viton-based fluoroelastomer microfluidics , 2011 .

[3]  A. Dietzel,et al.  A modular microvalve suitable for lab on a foil , 2012 .

[4]  L. Cabeza,et al.  Heat and cold storage with PCM: An up to date introduction into basics and applications , 2008 .

[5]  Pelle Rangsten,et al.  Miniaturization of components and systems for space using MEMS-technology , 2007 .

[6]  Bozhi Yang,et al.  A Latchable Phase-Change Microvalve With Integrated Heaters , 2009, Journal of Microelectromechanical Systems.

[7]  Stepan Lucyszyn,et al.  Design and pressure analysis for bulk-micromachined electrothermal hydraulic microactuators using a PCM , 2007 .

[8]  C. Mastrangelo,et al.  Surface micromachined paraffin-actuated microvalve , 2002 .

[9]  Carlos H. Mastrangelo,et al.  Electrothermally actuated inline microfluidic valve , 2003 .

[10]  M. A. Northrup,et al.  Thin Film Shape Memory Alloy Microactuators , 1996, Microelectromechanical Systems (MEMS).

[11]  K. Hjort,et al.  Acoustically enriching, large-depth aquatic sampler. , 2012, Lab on a chip.

[12]  Bruce K. Gale,et al.  An in situ heater for a phase-change-material-based actuation system , 2010 .

[13]  Young Jin Choi,et al.  A novel polydimethylsiloxane microfluidic system including thermopneumatic-actuated micropump and Paraffin-actuated microvalve , 2007 .

[14]  K. Hjort,et al.  High-pressure stainless steel active membrane microvalves , 2011 .

[15]  A. Charlesby The cross-linking and degradation of paraffin chains by high-energy radiation , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[16]  Greger Thornell,et al.  A thermal microactuator made by partial impregnation of polyimide with paraffin , 2002 .

[17]  Suresh V. Garimella,et al.  Recent advances in microscale pumping technologies: a review and evaluation , 2008 .

[18]  Marcus Lehto,et al.  A paraffin driven linear microactuator for high force and large displacement applications , 2006 .

[19]  B. L. Gowreesunker,et al.  Improved simulation of phase change processes in applications where conduction is the dominant heat transfer mode , 2012 .

[20]  R. Boden Microactuators for Powerful Pumps , 2008 .

[21]  C. Mastrangelo,et al.  SIMPLE, HIGH ACTUATION POWER, THERMALLY ACTIVATED PARAFFIN MICROACTUATOR , 1999 .

[22]  K. Hjort,et al.  Modeling and Analysis of a Phase Change Material Thermohydraulic Membrane Microactuator , 2013, Journal of Microelectromechanical Systems.

[23]  D. K. Mccarthy Nonmagnetic, lightweight oscillating actuator , 1970 .

[24]  G. Thornell,et al.  Analysis of Thermal Transients in an Asymmetric Silicon-Based Heat Dissipation Stage , 2007, IEEE Transactions on Components and Packaging Technologies.

[25]  Dominiek Reynaerts,et al.  Pneumatic and hydraulic microactuators: a review , 2010 .

[26]  K.F. Schoch,et al.  Standard Pressure-volume-temperature data for Polymers , 1996, IEEE Electrical Insulation Magazine.

[27]  Urban Simu,et al.  A metallic micropump for high-pressure microfluidics , 2008 .

[28]  Fatimah Ibrahim,et al.  Vacuum/Compression Valving (VCV) Using Parrafin-Wax on a Centrifugal Microfluidic CD Platform , 2013, PloS one.

[29]  U. Simu,et al.  A polymeric paraffin micropump with active valves for high-pressure microfluidics , 2005, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05..

[30]  H. Yousef,et al.  A Device Integrating Paraffin Microactuator, Fluidic Compartment and Microneedle array for Fluid Injection or Sampling , 2005 .

[31]  Klas Hjort,et al.  On-chip liquid storage and dispensing for lab-on-a-chip applications , 2008 .

[32]  G. Whitesides,et al.  Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. , 2003, Analytical chemistry.

[33]  Lars Stenmark,et al.  A large stroke, high force paraffin phase transition actuator , 2002 .

[34]  Jonas Jonsson,et al.  A latchable high-pressure thermohydraulic valve actuator , 2012 .

[35]  Juan G. Santiago,et al.  A review of micropumps , 2004 .

[36]  S. Spearing,et al.  Material Selection for Optimal Design of Thermally Actuated Pneumatic and Phase Change Microactuators , 2009, Journal of Microelectromechanical Systems.

[37]  Klas Hjort,et al.  High-Pressure Peristaltic Membrane Micropump With Temperature Control , 2010, Journal of Microelectromechanical Systems.

[38]  S. P. Srivastava,et al.  Phase-transition studies in n-alkanes and petroleum-related waxes—A review , 1993 .

[39]  S. Lucyszyn,et al.  A micromachined refreshable braille cell , 2005, Journal of Microelectromechanical Systems.

[40]  Stepan Lucyszyn,et al.  Thermal analysis for bulk-micromachined electrothermal hydraulic microactuators using a phase change material , 2007 .

[41]  Lars Stenmark,et al.  A thermally activated paraffin-based actuator for gas-flow control in a satellite electrical propulsion system , 2003 .

[42]  R. Pal,et al.  Phase change microvalve for integrated devices. , 2004, Analytical chemistry.

[43]  Yong-Kyu Yoon,et al.  A wireless sequentially actuated microvalve system , 2013 .

[44]  K. Hjort,et al.  A Latchable Valve for High-Pressure Microfluidics , 2010, Journal of Microelectromechanical Systems.

[45]  K. Hjort,et al.  A Polymeric Paraffin Microactuator , 2008, Journal of Microelectromechanical Systems.

[46]  Scott Tibbitts High output paraffin actuators: Utilization in aerospace mechanisms , 1988 .

[47]  J. Wang,et al.  Significant and Concurrent Enhancement of Stiffness, Strength, and Toughness for Paraffin Wax Through Organoclay Addition , 2006 .

[48]  Urban Simu,et al.  A polymeric paraffin actuated high-pressure micropump , 2006 .

[49]  N. Nguyen,et al.  Fundamentals and Applications of Microfluidics , 2002 .

[50]  Greger Thornell,et al.  On the integration of flexible circuit boards with hot embossed thermoplastic structures for actuator purposes , 2006 .

[51]  P. Woias,et al.  A novel self-heating paraffin membrane micro-actuator , 2008, 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems.

[52]  John D. Busch,et al.  A SURVEY OF MICRO-ACTUATOR TECHNOLOGIES FOR FUTURE SPACECRAFT MISSIONS , 2003 .

[53]  Yoon‐Kyoung Cho,et al.  Multifunctional microvalves control by optical illumination on nanoheaters and its application in centrifugal microfluidic devices. , 2007, Lab on a chip.

[54]  Robin H. Liu,et al.  Single-use, thermally actuated paraffin valves for microfluidic applications , 2004 .

[55]  Chong H. Ahn,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering a Review of Microvalves , 2022 .

[56]  Scott Tibbitts High-output paraffin linear motors: utilization in adaptive systems , 1992, Other Conferences.

[57]  G. Mózes,et al.  Paraffin products : properties, technologies, applications , 1982 .

[58]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[59]  Guo-Hua Feng,et al.  Fabrication and characterization of thermally driven fast turn-on microvalve with adjustable backpressure design , 2011 .

[60]  Greger Thornell,et al.  Fabrication of a paraffin actuator using hot embossing of polycarbonate , 2003 .

[61]  A. Sharma,et al.  Review on thermal energy storage with phase change materials and applications , 2009 .

[62]  Kwang W. Oh,et al.  A PHASE CHANGE MICROVALVE USING A MELTABLE MAGNETIC MATERIAL: FERRO-WAX , 2005 .

[63]  Carlos H. Mastrangelo,et al.  Electrothermally activated paraffin microactuators , 2002 .

[64]  Bozhi Yang,et al.  A latchable microvalve using phase change of paraffin wax , 2007 .

[65]  P. Dubois,et al.  Paraffin-PDMS composite thermo microactuator with large vertical displacement capability , 2006 .

[66]  Stepan Lucyszyn,et al.  Three-Dimensional RF MEMS Switch for Power Applications , 2009, IEEE Transactions on Industrial Electronics.

[67]  Marc Madou,et al.  Infrared controlled waxes for liquid handling and storage on a CD-microfluidic platform. , 2011, Lab on a chip.

[68]  Chidong Che,et al.  Theoretical and experimental study of volumetric change rate during phase change process , 2009 .

[69]  Robin H. Liu,et al.  Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. , 2004, Analytical chemistry.

[70]  K. Hjort,et al.  Printed circuit board paraffin actuators for disposable microfluidic systems , 2004 .

[71]  F. Homburg,et al.  A layered modular polymeric μ-valve suitable for lab-on-foil: design, fabrication, and characterization , 2011 .

[72]  P. Geil,et al.  Brittle–ductile transitions and the toughening mechanism in paraffin/organo-clay nanocomposites , 2007 .

[73]  K. Hjort,et al.  Microdispenser With Continuous Flow and Selectable Target Volume for Microfluidic High-Pressure Applications , 2014, Journal of Microelectromechanical Systems.

[74]  J. Schweitz,et al.  Binary Mixtures of n-Alkanes for Tunable Thermohydraulic Microactuators , 2007, Journal of Microelectromechanical Systems.

[75]  Chung-King Hsu,et al.  The thermal decomposition behaviors of stearic acid, paraffin wax and polyvinyl butyral , 2001 .