A class of P,T-invariant topological phases of interacting electrons

[1]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[2]  O. Motrunich,et al.  Exotic order in simple models of bosonic systems. , 2002, Physical review letters.

[3]  O. Motrunich,et al.  Microscopic models for fractionalized phases in strongly correlated systems , 2002, cond-mat/0201320.

[4]  M. Troyer,et al.  Topologically protected quantum bits using Josephson junction arrays , 2001, Nature.

[5]  K. West,et al.  Insulating and fractional quantum hall states in the first excited Landau level. , 2001, Physical review letters.

[6]  N. Read,et al.  Non-abelian spin-singlet quantum Hall states: wave functions and quasihole state counting , 2001, cond-mat/0104250.

[7]  K. West,et al.  Experimental evidence for a spin-polarized ground state in the ν = 5/2 fractional quantum Hall effect , 2001, cond-mat/0103144.

[8]  C. Nayak,et al.  Microscopic models of two-dimensional magnets with fractionalized excitations , 2000, cond-mat/0010242.

[9]  I. Todorov,et al.  Parafermion Hall states from coset projections of abelian conformal theories , 2000, hep-th/0009229.

[10]  R. Moessner,et al.  Resonating valence bond phase in the triangular lattice quantum dimer model. , 2000, Physical review letters.

[11]  M. Inoue,et al.  Edge of Chaos in Stochastically Coupled Cellular Automata : General Physics , 2000 .

[12]  M. Fisher,et al.  Z_2 Gauge Theory of Electron Fractionalization in Strongly Correlated Systems , 1999, cond-mat/9910224.

[13]  K. Schoutens,et al.  K -matrices for non-Abelian quantum Hall states , 1999, cond-mat/9908285.

[14]  M. Fisher,et al.  Dual vortex theory of strongly interacting electrons: A non-Fermi liquid with a twist , 1999, cond-mat/9903294.

[15]  Parafermion statistics and quasihole excitations for the generalizations of the paired quantum Hall states , 1998, cond-mat/9812288.

[16]  K. West,et al.  Exact Quantization of the Even-Denominator Fractional Quantum Hall State at ν = 5 / 2 Landau Level Filling Factor , 1999, cond-mat/9907356.

[17]  K. Schoutens,et al.  A New Class of Non-Abelian Spin-Singlet Quantum Hall States , 1999 .

[18]  M. Fisher,et al.  Dual order parameter for the nodal liquid , 1998, cond-mat/9811236.

[19]  K. Shtengel,et al.  Critical Behavior for 2D Uniform and¶Disordered Ferromagnets at Self-Dual Points , 1998, cond-mat/9811203.

[20]  I. Todorov,et al.  A Unified Conformal Field Theory Description¶of Paired Quantum Hall States , 1998, hep-th/9810105.

[21]  N. Read,et al.  Beyond paired quantum Hall states: parafermions and incompressible states in the first excited Landau level , 1998, cond-mat/9809384.

[22]  David P. Landau,et al.  Phase transitions and critical phenomena , 1989, Computing in Science & Engineering.

[23]  M. Fisher,et al.  Nodal Liquid Theory of the Pseudo-Gap Phase of High-Tc Superconductors , 1998, cond-mat/9803086.

[24]  F. Wilczek,et al.  A Chern-Simons effective field theory for the Pfaffian quantum Hall state , 1997, cond-mat/9711087.

[25]  J. Cardy,et al.  CRITICAL BEHAVIOR OF RANDOM-BOND POTTS MODELS , 1997, cond-mat/9705038.

[26]  G. Kuperberg Spiders for rank 2 Lie algebras , 1996, q-alg/9712003.

[27]  F. Wilczek,et al.  2n-quasihole states realize 2n−1-dimensional spinor braiding statistics in paired quantum Hall states , 1996, cond-mat/9605145.

[28]  N. Habegger,et al.  Topological Auantum Field Theories derived from the Kauffman bracket , 1995 .

[29]  A. Cappelli,et al.  Spontaneous symmetry breaking in the non-abelian anyon fluid , 1995, hep-th/9506155.

[30]  N. Reshetikhin,et al.  Quantum Groups , 1993, hep-th/9311069.

[31]  V. Turaev Quantum Invariants of Knots and 3-Manifolds , 1994, hep-th/9409028.

[32]  Zee,et al.  Tunneling in double-layered quantum Hall systems. , 1993, Physical review. B, Condensed matter.

[33]  Nicolai Reshetikhin,et al.  Quantum Groups , 1993 .

[34]  D. Kaplan A Method for simulating chiral fermions on the lattice , 1992, hep-lat/9206013.

[35]  F. Wilczek,et al.  Paired Hall states , 1992 .

[36]  Zee,et al.  Neutral superfluid modes and "magnetic" monopoles in multilayered quantum Hall systems. , 1992, Physical review letters.

[37]  N. Read,et al.  Large N Expansion for Frustrated and Doped Quantum Antiferromagnets , 2004, cond-mat/0402109.

[38]  Gregory W. Moore,et al.  Nonabelions in the fractional quantum Hall effect , 1991 .

[39]  Wen,et al.  Mean-field theory of spin-liquid states with finite energy gap and topological orders. , 1991, Physical review. B, Condensed matter.

[40]  R. Jalabert,et al.  Spontaneous alignment of frustrated bonds in an anisotropic, three-dimensional Ising model. , 1991, Physical review. B, Condensed matter.

[41]  Read,et al.  Large-N expansion for frustrated quantum antiferromagnets. , 1991, Physical review letters.

[42]  Fradkin,et al.  Chern-Simons gauge theories, confinement, and the chiral spin liquid. , 1991, Physical review letters.

[43]  Wen,et al.  Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces. , 1990, Physical review. B, Condensed matter.

[44]  Xiao-Gang Wen,et al.  Topological Orders in Rigid States , 1990 .

[45]  F. Wilczek,et al.  Anyon superconductivity? , 1989, Science.

[46]  Nathan Seiberg,et al.  Remarks on the canonical quantization of the Chern-Simons-Witten theory , 1989 .

[47]  A. Ashtekar,et al.  2+1 quantum gravity as a toy model for the 3+1 theory , 1989 .

[48]  Read,et al.  Statistics of the excitations of the resonating-valence-bond state. , 1989, Physical review. B, Condensed matter.

[49]  Edward Witten,et al.  Quantum field theory and the Jones polynomial , 1989 .

[50]  Berker,et al.  Random-field mechanism in random-bond multicritical systems. , 1989, Physical review letters.

[51]  J. Wehr,et al.  Rounding of first-order phase transitions in systems with quenched disorder. , 1989, Physical review letters.

[52]  A. Fetter,et al.  Random-phase approximation in the fractional-statistics gas. , 1989, Physical review. B, Condensed matter.

[53]  L. Smolin Invariants of links and critical points of the Chern-Simon path integrals , 1989 .

[54]  J. Miller,et al.  Computations of spherical gravitational collapse using null slicing , 1989 .

[55]  Kivelson Statistics of holons in the quantum hard-core dimer gas. , 1989, Physical review. B, Condensed matter.

[56]  D. Rokhsar,et al.  Superconductivity and the quantum hard-core dimer gas. , 1988, Physical review letters.

[57]  R. Laughlin The Relationship Between High-Temperature Superconductivity and the Fractional Quantum Hall Effect , 1988, Science.

[58]  Laughlin,et al.  Superconducting ground state of noninteracting particles obeying fractional statistics. , 1988, Physical review letters.

[59]  J. Sethna,et al.  Topology of the resonating valence-bond state: Solitons and high-Tc superconductivity. , 1987, Physical review. B, Condensed matter.

[60]  P. Anderson The Resonating Valence Bond State in La2CuO4 and Superconductivity , 1987, Science.

[61]  Louis H. Kauffman,et al.  State Models and the Jones Polynomial , 1987 .

[62]  W. Goldman Invariant functions on Lie groups and Hamiltonian flows of surface group representations , 1986 .

[63]  Michael B. Green,et al.  Workshop on Unified String Theories , 1986 .

[64]  Frank Wilczek,et al.  Fractional Statistics and the Quantum Hall Effect , 1984 .

[65]  B. Halperin Statistics of quasiparticles and the hierarchy of fractional quantized Hall states , 1984 .

[66]  R. Laughlin Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations , 1983 .

[67]  B. Halperin Theory of the quantized Hall conductance , 1983 .

[68]  Frank Wilczek,et al.  Quantum Mechanics of Fractional-Spin Particles , 1982 .

[69]  D. C. Tsui,et al.  Two-Dimensional Magnetotransport in the Extreme Quantum Limit , 1982 .

[70]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[71]  E. Domany,et al.  Duality relations and equivalences for models with O(N) and cubic symmetry , 1981 .

[72]  Gerald A. Goldin,et al.  Representations of a local current algebra in nonsimply connected space and the Aharonov–Bohm effect , 1981 .

[73]  John B. Kogut,et al.  An introduction to lattice gauge theory and spin systems , 1979 .

[74]  R. Baxter,et al.  Equivalence of the Potts model or Whitney polynomial with an ice-type model , 1976 .

[75]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[76]  Rudolf Haag,et al.  Local observables and particle statistics II , 1971 .

[77]  Robert H. Stolt,et al.  Correspondence between the first- and second-quantized theories of paraparticles , 1970 .

[78]  R. Stolt,et al.  Classification of Paraparticles , 1970 .

[79]  J. Hartle,et al.  Paraparticles of Infinite Order , 1970 .

[80]  S. Kamefuchi,et al.  Wavefunctions of identical particles , 1969 .

[81]  J. Hartle,et al.  QUANTUM MECHANICS OF PARAPARTICLES. , 1969 .

[82]  S. Kamefuchi,et al.  SOME GENERAL PROPERTIES OF PARA-FERMI FIELD THEORY. , 1968 .

[83]  H. Stapp,et al.  Parastatistics and a unified theory of identical particles , 1967 .

[84]  O. Steinmann Symmetrization postulate and cluster property , 1966 .

[85]  O. W. Greenberg,et al.  Symmetrization Postulate and Its Experimental Foundation , 1964 .

[86]  P. Morse Annals of Physics , 1957, Nature.

[87]  H. S. Green A Generalized Method of Field Quantization , 1953 .