Bayesian inference in probabilistic risk assessment - The current state of the art

Markov chain Monte Carlo (MCMC) approaches to sampling directly from the joint posterior distribution of aleatory model parameters have led to tremendous advances in Bayesian inference capability in a wide variety of fields, including probabilistic risk analysis. The advent of freely available software coupled with inexpensive computing power has catalyzed this advance. This paper examines where the risk assessment community is with respect to implementing modern computational-based Bayesian approaches to inference. Through a series of examples in different topical areas, it introduces salient concepts and illustrates the practical application of Bayesian inference via MCMC sampling to a variety of important problems.

[1]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[2]  M. S. Hamada,et al.  Using simultaneous higher-level and partial lower-level data in reliability assessments , 2008, Reliab. Eng. Syst. Saf..

[3]  Frank J. Groen,et al.  Foundations of probabilistic inference with uncertain evidence , 2005, Int. J. Approx. Reason..

[4]  Sylvia Richardson,et al.  Inference and monitoring convergence , 1995 .

[5]  John D. Musa,et al.  Software reliability - measurement, prediction, application , 1987, McGraw-Hill series in software engineering and technology.

[6]  Harold E. Ascher Repairable Systems Reliability , 2008 .

[7]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[8]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[9]  Jerry Nedelman,et al.  Book review: “Bayesian Data Analysis,” Second Edition by A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin Chapman & Hall/CRC, 2004 , 2005, Comput. Stat..

[10]  Edward B. Fowlkes,et al.  Risk analysis of the space shuttle: Pre-Challenger prediction of failure , 1989 .

[11]  Nigel G. Yoccoz,et al.  Hierarchical Modelling for the Environmental Sciences , 2007 .

[12]  V. E. Johnson,et al.  A hierarchical model for estimating the early reliability of complex systems , 2005, IEEE Transactions on Reliability.

[13]  Harry F. Martz,et al.  On comparing PRA results with operating experience , 1998 .

[14]  G. Pulcini,et al.  Bayes inference for a non-homogeneous Poisson process with power intensity law (reliability) , 1989 .

[15]  Stan Kaplan On a "Two-Stage" Bayesian Procedure for Determining ailure Rates from Experimental Data , 1983, IEEE Transactions on Power Apparatus and Systems.

[16]  Wei Xi,et al.  Bayesian analysis with consideration of data uncertainty in a specific scenario , 2003, Reliab. Eng. Syst. Saf..

[17]  Alyson G. Wilson,et al.  A fully Bayesian approach for combining multilevel failure information in fault tree quantification and optimal follow-on resource allocation , 2004, Reliab. Eng. Syst. Saf..

[18]  Richard E. Barlow,et al.  Statistical Theory of Reliability and Life Testing: Probability Models , 1976 .

[19]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[20]  Robert L. Winkler,et al.  An Introduction to Bayesian Inference and Decision , 1972 .

[21]  Nathan Siu,et al.  Bayesian parameter estimation in probabilistic risk assessment , 1998 .

[22]  Bianca Maria Colosimo,et al.  Bayesian Process Monitoring, Control and Optimization , 2006 .

[23]  N. Siu,et al.  Proceedings of workshop I in advanced topics in risk and reliability analysis. Model uncertainty: Its characterization and quantification , 1994 .

[24]  Valen E. Johnson A Bayesian x2 test for goodness-of-fit , 2004 .

[25]  D. L. Kelly,et al.  Evaluation of Loss of Offsite Power Events at Nuclear Power Plants: 1980 - 1996 , 1999 .

[26]  E. Jaynes Probability theory : the logic of science , 2003 .

[27]  Harry F. Martz,et al.  Uncertainty in Poisson event counts and exposure time in rate estimation , 1995 .

[28]  Harry F. Martz,et al.  Uncertainty in counts and operating time in estimating Poisson occurrence rates , 2003, Reliab. Eng. Syst. Saf..

[29]  Xiao-Li Meng,et al.  POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .

[30]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[31]  Zhao Chen,et al.  Bayesian and Empirical Bayes Approaches to Power Law Process and Microarray Analysis , 2004 .

[32]  G. Apostolakis The concept of probability in safety assessments of technological systems. , 1990, Science.

[33]  J. Geweke,et al.  Contemporary Bayesian Econometrics and Statistics , 2005 .

[34]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[35]  Hoang Pham,et al.  System Software Reliability , 1999 .

[36]  G. Apostolakis,et al.  Pitfalls in risk calculations , 1981 .

[37]  Russell G. Almond,et al.  Using higher-level failure data in fault tree quantification , 1997 .

[38]  M. J. Bayarri,et al.  P Values for Composite Null Models , 2000 .

[39]  Andrew B. Lawson,et al.  Statistical Methods in Spatial Epidemiology , 2001 .

[40]  Jayanta K. Ghosh Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis by Uffe B. Kjaerulff, Anders L. Madsen , 2008 .

[41]  Jeff Gill,et al.  Bayesian Methods : A Social and Behavioral Sciences Approach , 2002 .

[42]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[43]  Alyson G. Wilson,et al.  Bayesian networks for multilevel system reliability , 2007, Reliab. Eng. Syst. Saf..

[44]  Dana Kelly,et al.  Bayesian Modeling of Population Variability -- Practical Guidance and Pitfalls , 2008 .

[45]  Kaisa Simola,et al.  Bayesian models and ageing indicators for analysing random changes in failure occurrence , 2000, Reliab. Eng. Syst. Saf..

[46]  D. L. Kelly Bayesian Modeling of Time Trends in Component Reliability Data via Markov Chain Monte Carlo Simulation , 2007 .