Photoactuators and motors based on carbon nanotubes with selective chirality distributions

[1]  P. Wakeley,et al.  Synthesis , 2013, The Role of Animals in Emerging Viral Diseases.

[2]  Lenore L. Dai,et al.  Electronically Programmable, Reversible Shape Change in Two‐ and Three‐Dimensional Hydrogel Structures , 2013, Advanced materials.

[3]  X. Ren,et al.  Physical metallurgy of Ti–Ni-based shape memory alloys , 2005 .

[4]  Tomoyuki Ishikawa,et al.  Rapid and reversible shape changes of molecular crystals on photoirradiation , 2007, Nature.

[5]  N. Hu,et al.  Prediction of thermal expansion properties of carbon nanotubes using molecular dynamics simulations , 2012 .

[6]  Q. Pei,et al.  Advances in dielectric elastomers for actuators and artificial muscles. , 2010, Macromolecular rapid communications.

[7]  M. Strano,et al.  Near-infrared optical sensors based on single-walled carbon nanotubes , 2004, Nature materials.

[8]  B. Panchapakesan,et al.  Nanotube micro-optomechanical actuators , 2006 .

[9]  G. Whitesides,et al.  Fabrication of Micrometer‐Scale, Patterned Polyhedra by Self‐Assembly , 2002 .

[10]  Ann Marie Sastry,et al.  Mechanical properties of nanotube sheets: Alterations in joint morphology and achievable moduli in manufacturable materials , 2004 .

[11]  W. Yi Linear specific heat of carbon nanotubes , 1999 .

[12]  T. Halsey Electrorheological Fluids , 1992, Science.

[13]  H. G. Schild Poly(N-isopropylacrylamide): experiment, theory and application , 1992 .

[14]  Bin Liu,et al.  Thermal Expansion of Single Wall Carbon Nanotubes , 2004 .

[15]  I. Miskioglu,et al.  Electrical and thermal conductivity and tensile and flexural properties: Comparison of carbon black/polycarbonate and carbon nanotube/polycarbonate resins , 2011 .

[16]  M. C. Stuart,et al.  Emerging applications of stimuli-responsive polymer materials. , 2010, Nature materials.

[17]  Ji Won Suk,et al.  Graphene-based actuators. , 2010, Small.

[18]  Y. W. Wong,et al.  Thermal conductivity and thermal expansivity of in situ composites of a liquid crystalline polymer and polycarbonate , 1996 .

[19]  W. Euler,et al.  Photoactuation from a carbon nanotube-nafion bilayer composite. , 2006, The journal of physical chemistry. B.

[20]  D. R. Paul,et al.  Properties of polycarbonate/acrylonitrile‐butadiene‐styrene/talc composites , 2012 .

[21]  R. Smalley,et al.  Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes , 2002, Science.

[22]  Joselito M. Razal,et al.  Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives , 2003 .

[23]  Chris Rapley 2 o C , 2015 .

[24]  Paul L. McEuen,et al.  Single-wall carbon nanotubes , 2000 .

[25]  Bradley B. Rupp,et al.  Synthesis and characterization of transparent alumina reinforced polycarbonate nanocomposite , 2010 .

[26]  M. Okamoto,et al.  Foam processing and cellular structure of polycarbonate-based nanocomposites , 2006 .

[27]  Huaqing Xie,et al.  Measuring the thermal conductivity of a single carbon nanotube. , 2005, Physical review letters.

[28]  S. Bachilo,et al.  Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. , 2010, Nature nanotechnology.

[29]  Andrew G. Gillies,et al.  Optically-and Thermally-responsive Programmable Materials Based on Carbon Nanotube-hydrogel Polymer Composites , 2022 .

[30]  Eugene M. Terentjev,et al.  Photomechanical actuation in polymer–nanotube composites , 2005, Nature materials.

[31]  A. Lendlein,et al.  Shape-memory polymers , 2002 .

[32]  Haifeng Yu,et al.  Photocontrollable Liquid‐Crystalline Actuators , 2011, Advanced materials.

[33]  Belén Ferrer,et al.  Autonomous artificial nanomotor powered by sunlight , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[34]  A. Green,et al.  Nearly Single‐Chirality Single‐Walled Carbon Nanotubes Produced via Orthogonal Iterative Density Gradient Ultracentrifugation , 2011, Advanced materials.

[35]  Zheyao Wang,et al.  In-Situ Heat Capacity Measurement of Carbon Nanotubes Using Suspended Microstructure-Based Microcalorimetry , 2012, IEEE Transactions on Nanotechnology.

[36]  A. Scherz,et al.  Stimuli responsive materials: new avenues toward smart organic devices , 2005 .

[37]  S. Timoshenko,et al.  Analysis of Bi-Metal Thermostats , 1925 .

[38]  H. Dai,et al.  Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Xiaogong Wang,et al.  Photoinduced deformation of amphiphilic azo polymer colloidal spheres. , 2005, Journal of the American Chemical Society.

[40]  Richard E. Smalley,et al.  Single-Wall Carbon Nanotube Films , 2003 .

[41]  Yan Wang,et al.  Infrared-Triggered Actuators from Graphene-Based Nanocomposites , 2009 .

[42]  Filip Ilievski,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[43]  Kenneth A. Smith,et al.  Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide , 1999 .

[44]  M. Anthamatten,et al.  Shape Memory Polymers , 2016 .

[45]  Ming Zheng,et al.  DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes , 2009, Nature.

[46]  T. Ikeda,et al.  Photomechanics: Directed bending of a polymer film by light , 2003, Nature.

[47]  Xiaobo Tan,et al.  Strain energy density of VO2-based microactuators , 2013 .