Interfacial magnetism in complex oxide heterostructures probed by neutrons and x-rays

Magnetic complex-oxide heterostructures are of keen interest because a wealth of phenomena at the interface of dissimilar materials can give rise to fundamentally new physics and potentially valuable functionalities. Altered magnetization, novel magnetic coupling and emergent interfacial magnetism at the epitaxial layered-oxide interfaces are under intensive investigation, which shapes our understanding on how to utilize those materials, particularly for spintronics. Neutron and x-ray based techniques have played a decisive role in characterizing interfacial magnetic structures and clarifying the underlying physics in this rapidly developing field. Here we review some recent experimental results, with an emphasis on those studied via polarized neutron reflectometery and polarized x-ray absorption spectroscopy. We conclude with some perspectives.

[1]  D. Satapathy,et al.  Magnetic proximity effect in YBa2Cu3O7/La(2/3)Ca(1/3)MnO3 and YBa2Cu3O7/LaMnO(3+δ) superlattices. , 2011, Physical review letters.

[2]  V. Ustinov,et al.  Transverse and lateral structure of the spin-flop phase in fe/cr antiferromagnetic superlattices. , 2002, Physical review letters.

[3]  J. Kortright,et al.  Depth profile of uncompensated spins in an exchange bias system. , 2005, Physical review letters.

[4]  K.-I. Kobayashi,et al.  Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure , 1998, Nature.

[5]  E. Dagotto,et al.  Quantum confinement induced magnetism in LaNiO3-LaMnO3 superlattices , 2013, 1302.3253.

[6]  L. Largeau,et al.  Dual antiferromagnetic coupling at La0.67Sr0.33MnO3/SrRuO3 interfaces. , 2012, Physical Review Letters.

[7]  C. M. Folkman,et al.  Reversible redox reactions in an epitaxially stabilized SrCoO(x) oxygen sponge. , 2013, Nature materials.

[8]  R. Ramesh,et al.  Direct evidence for a half-metallic ferromagnet , 1998, Nature.

[9]  C. Piamonteze,et al.  Accuracy of the spin sum rule in XMCD for the transition-metal L edges from manganese to copper , 2009 .

[10]  JAMES STUART,et al.  Magnetism , 1872, Nature.

[11]  A. Barthelemy,et al.  Oxide Spintronics , 2007, IEEE Transactions on Electron Devices.

[12]  S. Valencia,et al.  Intrinsic antiferromagnetic/insulating phase at manganite surfaces and interfaces , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  N. Browning,et al.  Interfacial ferromagnetism in LaNiO3/CaMnO3 superlattices. , 2013, Physical review letters.

[14]  Philippe Ghosez,et al.  Interface Physics in Complex Oxide Heterostructures , 2011 .

[15]  H. Hwang,et al.  BASIC NOTIONS , 2022 .

[16]  Suppression of nuclear polarization near the surface of optically pumped GaAs , 2007 .

[17]  E. Dagotto,et al.  Electron doping of cuprates via interfaces with manganites , 2007, 0705.0498.

[18]  Z Sefrioui,et al.  Emergent spin filter at the interface between ferromagnetic and insulating layered oxides. , 2013, Physical review letters.

[19]  C. Batista,et al.  Tunable magnetic interaction at the atomic scale in oxide heterostructures. , 2010, Physical review letters.

[20]  H. Hwang,et al.  Titanium dxy ferromagnetism at the LaAlO3/SrTiO3 interface. , 2013, Nature materials.

[21]  P. J. Ryan,et al.  Quantifying octahedral rotations in strained perovskite oxide films , 2010, 1002.1317.

[22]  C. Vaz Electric field control of magnetism in multiferroic heterostructures , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  J. Eckstein,et al.  Enhanced ordering temperatures in antiferromagnetic manganite superlattices. , 2009, Nature materials.

[24]  T. Chatterji Neutron scattering from magnetic materials , 2006 .

[25]  A. Millis,et al.  Colloquium: Emergent properties in plane view: Strong correlations at oxide interfaces , 2014 .

[26]  C. Ahn,et al.  Origin of the magnetoelectric coupling effect in Pb(Zr0.2Ti0.8)O{3}/La{0.8}Sr{0.2}MnO{3} Multiferroic heterostructures. , 2010, Physical review letters.

[27]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[28]  A. Glavic,et al.  Effects of strain and buffer layer on interfacial magnetization in Sr 2 CrReO 6 films determined by polarized neutron reflectometry , 2014, 1406.7351.

[29]  Thole,et al.  X-ray circular dichroism as a probe of orbital magnetization. , 1992, Physical review letters.

[30]  Thole,et al.  X-ray circular dichroism and local magnetic fields. , 1993, Physical review letters.

[31]  D. Muller,et al.  Microscopic origins for stabilizing room-temperature ferromagnetism in ultrathin manganite layers , 2010, Proceedings of the National Academy of Sciences.

[32]  E. Tsymbal,et al.  Prediction of electrically induced magnetic reconstruction at the manganite/ferroelectric interface , 2009, 0904.1726.

[33]  Chicago,et al.  Nanoscale suppression of magnetization at atomically assembled manganite interfaces : XMCD and XRMS measurements , 2007 .

[34]  S. Pennycook,et al.  Electronic and magnetic reconstructions in La0.7Sr0.3MnO3/SrTiO3 heterostructures: a case of enhanced interlayer coupling controlled by the interface. , 2011, Physical review letters.

[35]  J. Eckstein,et al.  Correlating interfacial octahedral rotations with magnetism in (LaMnO3+δ)N/(SrTiO3)N superlattices , 2014, Nature Communications.

[36]  J. Mannhart,et al.  Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces , 2011, 1105.0235.

[37]  Vincent Garcia,et al.  Magnetoelectric Devices for Spintronics , 2014 .

[38]  H. N. Lee,et al.  Charge transport and magnetization profile at the interface between a correlated metal and an antiferromagnetic insulator , 2009, 0903.4663.

[39]  Q. Jia,et al.  Induced Magnetization inLa0.7Sr0.3MnO3/BiFeO3Superlattices , 2014, 1407.0723.

[40]  H. Habermeier,et al.  On magnetic interlayer coupling and proximity effect in a La0.67Ca0.33MnO3 (10nm)∕YBa2Cu3O7 (10nm) superlattice , 2007, 0704.2772.

[41]  R. Ramesh,et al.  Tuning the competition between ferromagnetism and antiferromagnetism in a half-doped manganite through magnetoelectric coupling. , 2013, Physical review letters.

[42]  A. J. Freeman,et al.  Journal of Magnetism and Magnetic Materials. Volumes 198-199, 1 June 1999, , 1999 .

[43]  L. G. Parratt Surface Studies of Solids by Total Reflection of X-Rays , 1954 .

[44]  A. Scherz,et al.  Limitations of integral XMCD sum-rules for the early 3d elements , 2005 .

[45]  C. Leighton Modern Techniques for Characterizing Magnetic Materials , 2005 .

[46]  V. Laukhin,et al.  Interfacial Strain : The Driving Force for Selective Orbital Occupancy in Manganite Thin Films , 2007 .

[47]  Suppressed magnetization at the surfaces and interfaces of ferromagnetic metallic manganites. , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[48]  D. Muller,et al.  Why some interfaces cannot be sharp , 2005, cond-mat/0510491.

[49]  Jochen Mannhart,et al.  Electrostatic modification of novel materials , 2006 .

[50]  H. Habermeier,et al.  Orbital Reconstruction and Covalent Bonding at an Oxide Interface , 2007, Science.

[51]  J. Mannhart,et al.  Oxide Interfaces—An Opportunity for Electronics , 2010, Science.

[52]  Sergei V. Kalinin,et al.  Beyond condensed matter physics on the nanoscale: the role of ionic and electrochemical phenomena in the physical functionalities of oxide materials. , 2012, ACS nano.

[53]  M. Kasai,et al.  Possible mechanism of proximity effect coupled to spin fluctuation in YBa2Cu3Oy/magnetic manganese oxide/YBa2Cu3Oy junctions , 1992 .

[54]  Josef Fink,et al.  Site specific and doping dependent electronic structure of YBa2Cu3Ox probed by ols and cu2p x-ray absorption spectroscopy , 1995 .

[55]  S. Pennycook,et al.  Insight into spin transport in oxide heterostructures from interface-resolved magnetic mapping , 2015, Nature Communications.

[56]  H. Fraser,et al.  Buffer-layer enhanced structural and electronic quality in ferrimagnetic Sr2CrReO6 epitaxial films , 2013 .

[57]  I. Schuller,et al.  Neutron scattering—The key characterization tool for nanostructured magnetic materials , 2014 .

[58]  J. Íñiguez,et al.  Exchange bias in LaNiO3-LaMnO3 superlattices. , 2012, Nature materials.

[59]  E. Wollan,et al.  Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds [ ( 1 − x ) La , x Ca ] Mn O 3 , 1955 .

[60]  Manuela Herman,et al.  Spintronics From Materials To Devices , 2016 .

[61]  M. Peter,et al.  ULTRA-HIGH-FIELD SUPERCONDUCTIVITY , 1962 .

[62]  J. M. D. Coey,et al.  Half-Metallic Ferromagnetic Oxides , 2003 .

[63]  A. Anane,et al.  Nearly total spin polarization in La2/3Sr1/3MnO3 from tunneling experiments , 2003 .

[64]  Y. Okimoto,et al.  Metallic ordered double-perovskite Sr2CrReO6 with maximal Curie temperature of 635 K , 2002 .

[65]  N. Nemes,et al.  Effect of interface-induced exchange fields on cuprate-manganite spin switches. , 2012, Physical review letters.

[66]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[67]  B. Dabrowski,et al.  Structural and magnetic phase diagrams of La 1-x Sr x MnO 3 and Pr 1-y Sr y MnO 3 , 2003 .

[68]  A. Goldman Electrostatic Gating of Ultrathin Films , 2014 .

[69]  M. Bibes,et al.  Reversible electric-field control of magnetization at oxide interfaces , 2014, Nature Communications.

[70]  M. Salamon,et al.  The physics of manganites: Structure and transport , 2001 .

[71]  H. Asano,et al.  Magnetic and junction properties of half-metallic double-perovskite thin films , 2005, IEEE Transactions on Magnetics.

[72]  Y. Takamura,et al.  Unconventional switching behavior in La0.7Sr0.3MnO3/La0.7Sr0.3CoO3 exchange-spring bilayers , 2014 .

[73]  Z. Liao,et al.  Symmetry and lattice mismatch induced strain accommodation near and away from correlated perovskite interfaces , 2014 .

[74]  C. Eom,et al.  Lattice distortion and uniaxial magnetic anisotropy in single domain epitaxial (110) films of SrRuO3 , 1999 .

[75]  J. Cezar,et al.  Magnetism at the interface between ferromagnetic and superconducting oxides , 2006 .

[76]  D. Hesse,et al.  Tailoring magnetic interlayer coupling in La0.7Sr0.3MnO3/SrRuO3 superlattices. , 2010, Physical review letters.

[77]  R. Dynes,et al.  Full electric control of exchange bias. , 2013, Physical review letters.

[78]  M. R. Ibarra,et al.  Double perovskites with ferromagnetism above room temperature , 2007 .

[79]  G. Laan Magnetic Linear X-Ray Dichroism as a Probe of the Magnetocrystalline Anisotropy , 1999 .

[80]  Shufeng Zhang,et al.  Reversible control of Co magnetism by voltage-induced oxidation. , 2014, Physical review letters.

[81]  Venturini,et al.  Superconducting phase of La2CuO4-y: Superconducting composition resulting from phase separation. , 1988, Physical review. B, Condensed matter.

[82]  S. Bader,et al.  Structural phase diagram of La1-xSrxMnO3+ delta : Relationship to magnetic and transport properties. , 1996, Physical review. B, Condensed matter.

[83]  M. J. Lee,et al.  Interface ferromagnetism and orbital reconstruction in BiFeO3-La(0.7)Sr(0.3)MnO3 heterostructures. , 2010, Physical review letters.

[84]  Y. Lee,et al.  Role of Oxygen 2p states for anti-ferromagnetic interfacial coupling and positive exchange bias of ferromagnetic LSMO/SRO bilayers , 2008 .

[85]  J. Verbeeck,et al.  Enhanced Local Magnetization by Interface Engineering in Perovskite‐Type Correlated Oxide Heterostructures , 2015 .

[86]  S. Bader,et al.  Magnetic structure in Fe/Sm-Co exchange spring bilayers with intermixed interfaces. , 2010, 1012.5086.

[87]  A. Hoffmann,et al.  Giant magnetoresistance in ferromagnet/superconductor superlattices. , 2005, Physical review letters.

[88]  Ming Liu,et al.  Charge transfer and interfacial magnetism in (LaNiO 3 ) n /(LaMnO 3 ) 2 superlattices , 2013, 1301.7295.

[89]  C. Bark,et al.  Spin structure in an interfacially coupled epitaxial ferromagnetic oxide heterostructure. , 2013, Physical review letters.

[90]  B. Nanda,et al.  Electron leakage and double-exchange ferromagnetism at the interface between a metal and an antiferromagnetic insulator: CaRuO3/CaMnO3. , 2007, Physical review letters.

[91]  N. Brookes,et al.  Spin and orbital Ti magnetism at LaMnO3/SrTiO3 interfaces. , 2010, Nature communications.

[92]  Y. Takamura,et al.  Magnetic structure of La0.7Sr0.3MnO3/La0.7Sr0.3FeO3 superlattices , 2009 .

[93]  C. Eom,et al.  Enhanced surface diffusion through termination conversion during epitaxial SrRuO3 growth , 2004 .

[94]  A. Müller Journal of Physics Condensed Matter , 2008 .

[95]  S. May,et al.  Magnetic Oxide Heterostructures , 2014 .

[96]  Andrew G. Glen,et al.  APPL , 2001 .

[97]  S. Parkin,et al.  Suppression of Metal-Insulator Transition in VO2 by Electric Field–Induced Oxygen Vacancy Formation , 2013, Science.

[98]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[99]  J. van den Brink,et al.  Delta doping of ferromagnetism in antiferromagnetic manganite superlattices. , 2011, Physical review letters.

[100]  M. Gabay,et al.  Metal-insulator transition in ultrathin LaNiO3 films. , 2011, Physical review letters.

[101]  G. M. De Luca,et al.  Ubiquitous long-range antiferromagnetic coupling across the interface between superconducting and ferromagnetic oxides , 2014, Nature Communications.

[102]  Fan Yang,et al.  Fully ordered Sr 2 CrReO 6 epitaxial films: A high-temperature ferrimagnetic semiconductor , 2012 .

[103]  S. Okamoto,et al.  Unconventional proximity effect and inverse spin-switch behavior in a model manganite-cuprate-manganite trilayer system. , 2010, Physical review letters.

[104]  Masashi Kawasaki,et al.  Engineered Interface of Magnetic Oxides , 2004, Science.

[105]  J. Voigt,et al.  Magnetic proximity effect in perovskite superconductor/ferromagnet multilayers , 2004, cond-mat/0408311.

[106]  S. Velthuis,et al.  Depth-resolved magnetic and structural analysis of relaxing epitaxial Sr 2 CrReO 6 , 2015 .