Smoothness of Gaussian Conditional Independence Models
暂无分享,去创建一个
[1] Hans Schönemann,et al. SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.
[2] Seth Sullivant,et al. Lectures on Algebraic Statistics , 2008 .
[3] S. Sullivant. Gaussian conditional independence relations have no finite complete characterization , 2007, 0704.2847.
[4] M. Drton. Likelihood ratio tests and singularities , 2007, math/0703360.
[5] Frantisek Matús,et al. On Gaussian conditional independence structures , 2007, Kybernetika.
[6] P. Simecek. Classes of Gaussian , Discrete and Binary Representable Independence Models Have No Finite Characterization , 2006 .
[7] C.J.H. Mann,et al. Probabilistic Conditional Independence Structures , 2005 .
[8] Frantisek Matús,et al. Conditional Independences in Gaussian Vectors and Rings of Polynomials , 2002, WCII.
[9] D. Madigan,et al. Separation and Completeness Properties for Amp Chain Graph Markov Models , 2001 .
[10] D. Madigan,et al. Alternative Markov Properties for Chain Graphs , 2001 .
[11] Barbara Schneider,et al. Basel , 2000 .
[12] Michael I. Jordan. Graphical Models , 2003 .
[13] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[14] David A. Cox,et al. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .
[15] F. Matús. On equivalence of Markov properties over undirected graphs , 1992, Journal of Applied Probability.
[16] Marie-Françoise Roy,et al. Real algebraic geometry , 1992 .
[17] Milan Studeny,et al. Conditional independence relations have no finite complete characterization , 1992 .
[18] C. Gibson. REAL ALGEBRAIC AND SEMI‐ALGEBRAIC SETS (Actualités Mathématiques 348) , 1991 .
[19] J. Risler,et al. Real algebraic and semi-algebraic sets , 1990 .
[20] Ihrer Grenzgebiete,et al. Ergebnisse der Mathematik und ihrer Grenzgebiete , 1975, Sums of Independent Random Variables.