Entropy–viscosity method for the single material Euler equations in Lagrangian frame
暂无分享,去创建一个
[1] M. Shashkov,et al. The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy , 1998 .
[2] Jean-Luc Guermond,et al. On the use of the notion of suitable weak solutions in CFD , 2008 .
[3] D. Benson. Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .
[4] Konstantin Lipnikov,et al. A framework for developing a mimetic tensor artificial viscosity for Lagrangian hydrocodes on arbitrary polygonal meshes , 2010, J. Comput. Phys..
[5] Tzanio V. Kolev,et al. High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics , 2012, SIAM J. Sci. Comput..
[6] Eitan Tadmor,et al. A minimum entropy principle in the gas dynamics equations , 1986 .
[7] Jean-Luc Guermond,et al. Viscous Regularization of the Euler Equations and Entropy Principles , 2012, SIAM J. Appl. Math..
[8] I. Akkerman,et al. Isogeometric analysis of Lagrangian hydrodynamics , 2013, J. Comput. Phys..
[9] Donald E. Burton,et al. Multidimensional discretization of conservation laws for unstructured polyhedral grids , 1994 .
[10] Tzanio V. Kolev,et al. A tensor artificial viscosity using a finite element approach , 2009, J. Comput. Phys..
[11] R. D. Richtmyer,et al. A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .
[12] Raphaël Loubère,et al. "Curl-q": A vorticity damping artificial viscosity for essentially irrotational Lagrangian hydrodynamics calculations , 2006, J. Comput. Phys..
[13] Guglielmo Scovazzi,et al. Stabilized shock hydrodynamics: II. Design and physical interpretation of the SUPG operator for Lagrangian computations☆ , 2007 .
[14] Rémi Abgrall,et al. A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..
[15] A. J. Barlow,et al. A compatible finite element multi‐material ALE hydrodynamics algorithm , 2008 .
[16] Raphaël Loubère,et al. Staggered Lagrangian Discretization Based on Cell-Centered Riemann Solver and Associated Hydrodynamics Scheme , 2011 .
[17] Bruno Després,et al. Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems , 2005 .
[18] Mikhail Shashkov,et al. Multi-Scale Lagrangian Shock Hydrodynamics on Q1/P0 Finite Elements: Theoretical Framework and Two-dimensional Computations. , 2008 .
[19] A. Harten. On the symmetric form of systems of conservation laws with entropy , 1983 .
[20] Rémi Abgrall,et al. A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids , 2014, J. Comput. Phys..
[21] J. Guermond,et al. Implementation of the entropy viscosity method , 2011 .
[22] Jean-Luc Guermond,et al. Entropy viscosity method for nonlinear conservation laws , 2011, J. Comput. Phys..
[23] Mikhail Shashkov,et al. A tensor artificial viscosity using a mimetic finite difference algorithm , 2001 .
[24] Donald E. Burton,et al. Exact conservation of energy and momentum in staggered-grid hydrodynamics with arbitrary connectivity , 1991 .
[25] L Howarth. Similarity and Dimensional Methods in Mechanics , 1960 .
[26] R. J. DiPerna. Convergence of approximate solutions to conservation laws , 1983 .
[27] Ely M. Gelbard,et al. Methods in Computational Physics, Vol. I , 1964 .
[28] C. C. Long,et al. Isogeometric analysis of Lagrangian hydrodynamics: Axisymmetric formulation in the rz-cylindrical coordinates , 2014, J. Comput. Phys..
[29] H. Frid. Maps of Convex Sets and Invariant Regions¶for Finite-Difference Systems¶of Conservation Laws , 2001 .
[30] Jérôme Breil,et al. A second‐order cell‐centered Lagrangian scheme for two‐dimensional compressible flow problems , 2008 .
[31] Peizhu Luo,et al. CONVERGENCE OF THE LAX–FRIEDRICHS SCHEME FOR ISENTROPIC GAS DYNAMICS (III) , 1985 .
[32] Bruno Després,et al. A new exceptional points method with application to cell-centered Lagrangian schemes and curved meshes , 2012, J. Comput. Phys..
[33] Raphaël Loubère,et al. 3D staggered Lagrangian hydrodynamics scheme with cell‐centered Riemann solver‐based artificial viscosity , 2013 .
[34] A. Bressan,et al. Vanishing Viscosity Solutions of Nonlinear Hyperbolic Systems , 2001, math/0111321.
[35] W. F. Noh. Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .
[36] Pierre-Henri Maire,et al. A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes , 2009, J. Comput. Phys..
[37] Bruno Després,et al. A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension , 2009, J. Comput. Phys..
[38] Jean-Luc Guermond,et al. Implementation of the entropy viscosity method with the discontinuous Galerkin method , 2013 .
[39] J. Gillis,et al. Methods in Computational Physics , 1964 .
[40] Bojan Popov,et al. Invariant Domains and First-Order Continuous Finite Element Approximation for Hyperbolic Systems , 2015, SIAM J. Numer. Anal..
[41] P. Lax. Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .
[42] Mikhail Shashkov,et al. Formulations of Artificial Viscosity for Multi-dimensional Shock Wave Computations , 1998 .
[43] R. J. Diperna,et al. Convergence of the viscosity method for isentropic gas dynamics , 1983 .
[44] Ami Harten,et al. Convex Entropies and Hyperbolicity for General Euler Equations , 1998 .
[45] Huijiang Zhao. FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES WITH SINGULAR INITIAL DATA Lp(p , 1996 .