Entropy–viscosity method for the single material Euler equations in Lagrangian frame

A new finite element method for solving the Euler equations in Lagrangian coordinates is proposed. The method is stabilized by adding artificial diffusion terms compatible with positivity of mass and internal energy, a minimum principle on the specific entropy, and all generalized entropy inequalities. Two options of first-order artificial diffusion are considered. One is in the spirit of the Eulerian based method (Guermond et al., 2011 [23, 22]; Zingan et al., 2013) and the other is similar to existing viscosity stabilizations in Lagrangian frame, e.g., Dobrev et al. (2012). The method is verified to be high-order for smooth solutions even with active viscosity terms. This is achieved by using high-order finite element spaces and an entropy-based viscosity stabilization that degenerates the first-order viscous terms. This stabilization automatically distinguishes smooth and singular regions. The formal accuracy and convergence properties of the proposed methods are tested on a series of benchmark problems. This is the first result extending the entropy–viscosity methodology to the Lagrangian hydrodynamics.

[1]  M. Shashkov,et al.  The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy , 1998 .

[2]  Jean-Luc Guermond,et al.  On the use of the notion of suitable weak solutions in CFD , 2008 .

[3]  D. Benson Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .

[4]  Konstantin Lipnikov,et al.  A framework for developing a mimetic tensor artificial viscosity for Lagrangian hydrocodes on arbitrary polygonal meshes , 2010, J. Comput. Phys..

[5]  Tzanio V. Kolev,et al.  High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics , 2012, SIAM J. Sci. Comput..

[6]  Eitan Tadmor,et al.  A minimum entropy principle in the gas dynamics equations , 1986 .

[7]  Jean-Luc Guermond,et al.  Viscous Regularization of the Euler Equations and Entropy Principles , 2012, SIAM J. Appl. Math..

[8]  I. Akkerman,et al.  Isogeometric analysis of Lagrangian hydrodynamics , 2013, J. Comput. Phys..

[9]  Donald E. Burton,et al.  Multidimensional discretization of conservation laws for unstructured polyhedral grids , 1994 .

[10]  Tzanio V. Kolev,et al.  A tensor artificial viscosity using a finite element approach , 2009, J. Comput. Phys..

[11]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[12]  Raphaël Loubère,et al.  "Curl-q": A vorticity damping artificial viscosity for essentially irrotational Lagrangian hydrodynamics calculations , 2006, J. Comput. Phys..

[13]  Guglielmo Scovazzi,et al.  Stabilized shock hydrodynamics: II. Design and physical interpretation of the SUPG operator for Lagrangian computations☆ , 2007 .

[14]  Rémi Abgrall,et al.  A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..

[15]  A. J. Barlow,et al.  A compatible finite element multi‐material ALE hydrodynamics algorithm , 2008 .

[16]  Raphaël Loubère,et al.  Staggered Lagrangian Discretization Based on Cell-Centered Riemann Solver and Associated Hydrodynamics Scheme , 2011 .

[17]  Bruno Després,et al.  Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems , 2005 .

[18]  Mikhail Shashkov,et al.  Multi-Scale Lagrangian Shock Hydrodynamics on Q1/P0 Finite Elements: Theoretical Framework and Two-dimensional Computations. , 2008 .

[19]  A. Harten On the symmetric form of systems of conservation laws with entropy , 1983 .

[20]  Rémi Abgrall,et al.  A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids , 2014, J. Comput. Phys..

[21]  J. Guermond,et al.  Implementation of the entropy viscosity method , 2011 .

[22]  Jean-Luc Guermond,et al.  Entropy viscosity method for nonlinear conservation laws , 2011, J. Comput. Phys..

[23]  Mikhail Shashkov,et al.  A tensor artificial viscosity using a mimetic finite difference algorithm , 2001 .

[24]  Donald E. Burton,et al.  Exact conservation of energy and momentum in staggered-grid hydrodynamics with arbitrary connectivity , 1991 .

[25]  L Howarth Similarity and Dimensional Methods in Mechanics , 1960 .

[26]  R. J. DiPerna Convergence of approximate solutions to conservation laws , 1983 .

[27]  Ely M. Gelbard,et al.  Methods in Computational Physics, Vol. I , 1964 .

[28]  C. C. Long,et al.  Isogeometric analysis of Lagrangian hydrodynamics: Axisymmetric formulation in the rz-cylindrical coordinates , 2014, J. Comput. Phys..

[29]  H. Frid Maps of Convex Sets and Invariant Regions¶for Finite-Difference Systems¶of Conservation Laws , 2001 .

[30]  Jérôme Breil,et al.  A second‐order cell‐centered Lagrangian scheme for two‐dimensional compressible flow problems , 2008 .

[31]  Peizhu Luo,et al.  CONVERGENCE OF THE LAX–FRIEDRICHS SCHEME FOR ISENTROPIC GAS DYNAMICS (III) , 1985 .

[32]  Bruno Després,et al.  A new exceptional points method with application to cell-centered Lagrangian schemes and curved meshes , 2012, J. Comput. Phys..

[33]  Raphaël Loubère,et al.  3D staggered Lagrangian hydrodynamics scheme with cell‐centered Riemann solver‐based artificial viscosity , 2013 .

[34]  A. Bressan,et al.  Vanishing Viscosity Solutions of Nonlinear Hyperbolic Systems , 2001, math/0111321.

[35]  W. F. Noh Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .

[36]  Pierre-Henri Maire,et al.  A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes , 2009, J. Comput. Phys..

[37]  Bruno Després,et al.  A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension , 2009, J. Comput. Phys..

[38]  Jean-Luc Guermond,et al.  Implementation of the entropy viscosity method with the discontinuous Galerkin method , 2013 .

[39]  J. Gillis,et al.  Methods in Computational Physics , 1964 .

[40]  Bojan Popov,et al.  Invariant Domains and First-Order Continuous Finite Element Approximation for Hyperbolic Systems , 2015, SIAM J. Numer. Anal..

[41]  P. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .

[42]  Mikhail Shashkov,et al.  Formulations of Artificial Viscosity for Multi-dimensional Shock Wave Computations , 1998 .

[43]  R. J. Diperna,et al.  Convergence of the viscosity method for isentropic gas dynamics , 1983 .

[44]  Ami Harten,et al.  Convex Entropies and Hyperbolicity for General Euler Equations , 1998 .

[45]  Huijiang Zhao FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES WITH SINGULAR INITIAL DATA Lp(p , 1996 .