New estimates for Ritz vectors
暂无分享,去创建一个
[1] F. B.. The Theory of Linear Operators: , 1937, Nature.
[2] Tosio Kato. On the Upper and Lower Bounds of Eigenvalues , 1949 .
[3] H. Weinberger. Error bounds in the Rayleigh-Ritz approximation of eigenvectors , 1960 .
[4] Chandler Davis. The rotation of eigenvectors by a perturbation , 1963 .
[5] Tosio Kato. Perturbation theory for linear operators , 1966 .
[6] W. Kahan,et al. The Rotation of Eigenvectors by a Perturbation. III , 1970 .
[7] H. Weinberger. Variational Methods for Eigenvalue Approximation , 1974 .
[8] J. Rappaz,et al. On spectral approximation. Part 1. The problem of convergence , 1978 .
[9] Jacques Rappaz,et al. Spectral Approximation .1. Problem of Convergence , 1978 .
[10] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[11] A. Knyazev. Sharp a priori error estimates of the Rayleigh-Ritz method without assumptions of fixed sign or compactness , 1985 .
[12] J. Rappaz,et al. Finite element methods in linear ideal magnetohydrodynamics , 1985 .
[13] A. Knyazev. Convergence rate estimates for iterative methods for a mesh symmetrie eigenvalue problem , 1987 .
[14] Andrew V. Knyazev,et al. A subspace preconditioning algorithm for eigenvector/eigenvalue computation , 1995, Adv. Comput. Math..
[15] Daniel Boley,et al. Methods for large sparse eigenvalue problems from waveguide analysis , 1996 .
[16] Guanrong Chen,et al. Approximate Solutions of Operator Equations , 1997 .