LARGE TIME ASYMPTOTICS OF SOLUTIONS TO THE GENERALIZED KORTEWEG-DE VRIES EQUATION

We study the asymptotic behavior for large time of solutions to the Cauchy problem for the generalized Korteweg–de Vries (gKdV) equationut+(|u|ρ−1 u)x+13uxxx=0, wherex, t∈Rwhen the initial data are small enough. If the powerρof the nonlinearity is greater than 3 then the solution of the Cauchy problem has a quasilinear asymptotic behavior for large time. More precisely, we show that the solutionu(t) satisfies the decay estimate ‖u(t)‖Lβ⩽C(1+t)−(1/3)(1−1/β)forβ∈(4, ∞], ‖uux(t)‖L∞⩽Ct−2/3(1+t)−1/3and using these estimates we prove the existence of the scattering stateu+∈L2such that ‖u(t)−U(t) u+‖L2⩽Ct−(ρ−3)/3for any small initial data belonging to the weighted Sobolev spaceH1, 1={f∈L2; ‖(1+|x|2)1/2(1−∂2x)1/2 f‖L2<∞}, whereU(t) is the Airy free evolution group.

[1]  C. Kenig,et al.  Well‐posedness and scattering results for the generalized korteweg‐de vries equation via the contraction principle , 1993 .

[2]  Sergiu Klainerman,et al.  Long-time behavior of solutions to nonlinear evolution equations , 1982 .

[3]  Peter Constantin,et al.  Local smoothing properties of dispersive equations , 1988 .

[4]  A. Faminskii,et al.  GENERALIZED SOLUTIONS OF THE CAUCHY PROBLEM FOR THE KORTEWEG-DE VRIES EQUATION , 1984 .

[5]  Luis Vega,et al.  On the (generalized) Korteweg-de Vries equation , 1989 .

[6]  N. Hayashi Analyticity of solutions of the Korteweg-De Vries equation , 1991 .

[7]  W. Strauss Dispersion of low-energy waves for two conservative equations , 1974 .

[8]  M. Tsutsumi On Global Solutions of the Generalized Kortweg-de Vries Equation , 1971 .

[9]  Walter A. Strauss,et al.  Nonlinear scattering theory at low energy , 1981 .

[10]  Nakao Hayashi,et al.  Large time asymptotics of solutions to the generalized Benjamin-Ono equation , 1999 .

[11]  J. Ginibre,et al.  Existence and uniqueness of solutions for the generalized Korteweg de Vries equation , 1990 .

[12]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .

[13]  M. Weinstein,et al.  Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation , 1991 .

[14]  J. Saut Quelques généralisations de l'équation de Korteweg-de Vries, II , 1979 .

[15]  G. Ponce,et al.  Nonlinear Small Data Scattering for the Generalized Korteweg-de Vries Equation , 1990 .

[16]  A. D. Bouard,et al.  Gevrey regularizing effect for the (generalized) Korteweg-de Vries equation and nonlinear Schrödinger equations , 1995 .

[17]  Jerry L. Bona,et al.  Dispersive Blowup of Solutions of Generalized Korteweg-de Vries Equations , 1993 .

[18]  Jalal Shatah,et al.  Global existence of small solutions to nonlinear evolution equations , 1982 .

[19]  Gustavo Ponce,et al.  Global, small amplitude solutions to nonlinear evolution equations , 1983 .

[20]  M. Rammaha On the asymptotic behavior of solutions of generalized Korteweg-de Vries equations , 1989 .

[21]  A. Sidi,et al.  On the long time behaviour of a generalized KdV equation , 1986 .

[22]  W. Strauss,et al.  Gain of regularity for equations of KdV type , 1992 .

[23]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .