Distributionally Robust Control of Constrained Stochastic Systems

We investigate the control of constrained stochastic linear systems when faced with limited information regarding the disturbance process, i.e., when only the first two moments of the disturbance distribution are known. We consider two types of distributionally robust constraints. In the first case, we require that the constraints hold with a given probability for all disturbance distributions sharing the known moments. These constraints are commonly referred to as distributionally robust chance constraints. In the second case, we impose conditional value-at-risk (CVaR) constraints to bound the expected constraint violation for all disturbance distributions consistent with the given moment information. Such constraints are referred to as distributionally robust CVaR constraints with second-order moment specifications. We propose a method for designing linear controllers for systems with such constraints that is both computationally tractable and practically meaningful for both finite and infinite horizon problems. We prove in the infinite horizon case that our design procedure produces the globally optimal linear output feedback controller for distributionally robust CVaR and chance constrained problems. The proposed methods are illustrated for a wind blade control design case study for which distributionally robust constraints constitute sensible design objectives.

[1]  Mayank Sharma,et al.  Supermodularity and Affine Policies in Dynamic Robust Optimization , 2013, Oper. Res..

[2]  B. R. Barmish,et al.  Probabilistic enhancement of classical robustness margins: the unirectangularity concept , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[3]  D. Bertsekas,et al.  On the minimax reachability of target sets and target tubes , 1971 .

[4]  Masao Fukushima,et al.  Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management , 2009, Oper. Res..

[5]  Basil Kouvaritakis,et al.  Probabilistic Constrained MPC for Multiplicative and Additive Stochastic Uncertainty , 2009, IEEE Transactions on Automatic Control.

[6]  David Q. Mayne,et al.  Correction to "Constrained model predictive control: stability and optimality" , 2001, Autom..

[7]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[8]  Giuseppe Carlo Calafiore,et al.  Distributionally Robust Chance-Constrained Linear Programs with Applications , 2006 .

[9]  Stephen P. Boyd,et al.  Linear controller design: limits of performance , 1991 .

[10]  Fehmi Cirak,et al.  ZEITSCHRIFT FÜR ANGEWANDTE MATHEMATIK UND MECHANIK , 1952, Über Stammfaktoren bei ternären quadratischen Formen.

[11]  B. R. Barmish,et al.  Distributionally Robust Monte Carlo Simulation: A Tutorial Survey , 2002 .

[12]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[13]  Guoming G. Zhu,et al.  A Convergent Algorithm for the Output Covariance Constraint Control Problem , 1997 .

[14]  Daniel Kuhn,et al.  Distributionally robust joint chance constraints with second-order moment information , 2011, Mathematical Programming.

[15]  T. Theodorsen General Theory of Aerodynamic Instability and the Mechanism of Flutter , 1934 .

[16]  Yaoliang Yu,et al.  A General Projection Property for Distribution Families , 2009, NIPS.

[17]  Alexander Shapiro,et al.  Convex Approximations of Chance Constrained Programs , 2006, SIAM J. Optim..

[18]  H. Föllmer,et al.  Stochastic Finance: An Introduction in Discrete Time , 2002 .

[19]  Herbert Wagner Über die Entstehung des dynamischen Auftriebes von Tragflügeln , 1925 .

[20]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[21]  Manfred Morari,et al.  Linear controller design for chance constrained systems , 2014, Autom..

[22]  B. Ross Barmish,et al.  The uniform distribution: A rigorous justification for its use in robustness analysis , 1996, Math. Control. Signals Syst..

[23]  Giuseppe Carlo Calafiore,et al.  The scenario approach to robust control design , 2006, IEEE Transactions on Automatic Control.

[24]  H. Witsenhausen A Counterexample in Stochastic Optimum Control , 1968 .

[25]  A. Laub,et al.  Generalized eigenproblem algorithms and software for algebraic Riccati equations , 1984, Proceedings of the IEEE.

[26]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[27]  Eric C. Kerrigan,et al.  Robust Control Synthesis for Gust Load Alleviation from Large Aeroelastic Models with Relaxation of Spatial Discretisation , 2012 .

[28]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[29]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[30]  Giuseppe Carlo Calafiore,et al.  Random Convex Programs , 2010, SIAM J. Optim..

[31]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[32]  J. Gordon Leishman,et al.  Principles of Helicopter Aerodynamics , 2000 .

[33]  Daniel Kuhn,et al.  An Efficient Method to Estimate the Suboptimality of Affine Controllers , 2011, IEEE Transactions on Automatic Control.

[34]  Jean-Philippe Vial,et al.  Robust Optimization , 2021, ICORES.

[35]  Eric C. Kerrigan,et al.  Output feedback receding horizon control of constrained systems , 2007, Int. J. Control.

[36]  Daniel Kuhn,et al.  Generalized Gauss inequalities via semidefinite programming , 2015, Mathematical Programming.

[37]  Manfred Morari,et al.  Infinite Horizon Performance Bounds for Uncertain Constrained Systems , 2013, IEEE Transactions on Automatic Control.

[38]  Bing Feng Ng,et al.  Optimal control for load alleviation in wind turbines , 2014 .

[39]  Eric C. Kerrigan,et al.  Optimization over state feedback policies for robust control with constraints , 2006, Autom..

[40]  Leonie Moench,et al.  Low Speed Aerodynamics , 2016 .

[41]  C. W. Campbell,et al.  Monte Carlo turbulence simulation using rational approximations to von Karman spectra , 1986 .

[42]  Melvyn Sim,et al.  From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization , 2010, Oper. Res..

[43]  A. Charnes,et al.  Chance-Constrained Programming , 1959 .

[44]  G. Calafiore,et al.  On Distributionally Robust Chance-Constrained Linear Programs , 2006 .