Asymptotic behavior of the Whittle estimator for the increments of a Rosenblatt process
暂无分享,去创建一个
[1] J. Doob. Stochastic processes , 1953 .
[2] C. Tudor. Analysis of the Rosenblatt process , 2006, math/0606602.
[3] M. Taqqu. Weak convergence to fractional brownian motion and to the rosenblatt process , 1975, Advances in Applied Probability.
[4] D. Nualart. The Malliavin Calculus and Related Topics , 1995 .
[5] Murad S. Taqqu,et al. Theory and applications of long-range dependence , 2003 .
[6] Giovanni Peccati,et al. Central limit theorems for sequences of multiple stochastic integrals , 2005 .
[7] N. T. Kottegoda,et al. Stochastic Modelling of Riverflow Time Series , 1977 .
[8] Jan Beran,et al. Statistics for long-memory processes , 1994 .
[9] F. Viens,et al. Self-similarity parameter estimation and reproduction property for non-Gaussian Hermite processes , 2008, 0807.1208.
[10] M. Taqqu,et al. Large-Sample Properties of Parameter Estimates for Strongly Dependent Stationary Gaussian Time Series , 1986 .
[11] M. Taqqu,et al. Whittle estimator for finite-variance non-Gaussian time series with long memory , 1999 .
[12] David Nualart,et al. Central limit theorems for multiple stochastic integrals and Malliavin calculus , 2007 .
[13] C. Tudor. Analysis of Variations for Self-similar Processes , 2013 .
[14] P. Major,et al. Central limit theorems for non-linear functionals of Gaussian fields , 1983 .
[15] M. Taqqu. A representation for self-similar processes , 1978 .
[16] P. Robinson. Gaussian Semiparametric Estimation of Long Range Dependence , 1995 .
[17] M. Taqqu,et al. Regularization and integral representations of Hermite processes , 2010 .
[18] Murad S. Taqqu,et al. Multiple stochastic integrals with dependent integrators , 1987 .
[19] Patrice Abry,et al. Wavelet-based synthesis of the Rosenblatt process , 2006, Signal Process..
[20] F. Viens,et al. Variations and estimators for the selfsimilarity order through Malliavin calculus , 2007, 0709.3896.
[21] Jean-Marc Bardet,et al. A wavelet analysis of the Rosenblatt process: Chaos expansion and estimation of the self-similarity parameter , 2008, 0811.2664.
[22] Murad S. Taqqu,et al. Weak convergence to fractional brownian motion and to the rosenblatt process , 1975, Advances in Applied Probability.
[23] Liudas Giraitis,et al. Nonstationarity-Extended Local Whittle Estimation , 2006 .
[24] D. Surgailis,et al. A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotical normality of Whittle's estimate , 1990 .
[25] Y. Sinai. Self-Similar Probability Distributions , 1976 .
[26] M. Taqqu,et al. Properties and numerical evaluation of the Rosenblatt distribution , 2013, 1307.5990.
[27] G. Peccati,et al. Normal Approximations with Malliavin Calculus: From Stein's Method to Universality , 2012 .
[28] R. Dobrushin,et al. Non-central limit theorems for non-linear functional of Gaussian fields , 1979 .
[29] F. Viens,et al. Variations and estimators for selfsimilarity parameters via Malliavin calculus , 2009 .
[30] G. Peccati,et al. Gaussian Limits for Vector-valued Multiple Stochastic Integrals , 2005 .
[31] D. Nualart,et al. Central and non-central limit theorems for weighted power variations of fractional brownian motion , 2007, 0710.5639.
[32] R. Dahlhaus. Efficient parameter estimation for self-similar processes , 1989, math/0607078.