Hyperspectral unmixing with material variability using social sparsity

We apply social ℓ-norms for the first time to the problem of hyperspectral unmixing while modeling spectral variability. These norms are built with inter-group penalties which are combined in a global intra-group penalization that can enforce selection of entire endmember bundles; this results in the selection of a few representative materials even in the presence of large endmembers bundles capturing each material's variability. We demonstrate improvements quantitatively on synthetic data and qualitatively on real data for three cases of social norms: group, elitist, and a fractional social norm, respectively. We find that the greatest improvements arise from using either the group or fractional flavor.

[1]  Antonio J. Plaza,et al.  Hyperspectral Image Segmentation Using a New Spectral Unmixing-Based Binary Partition Tree Representation , 2014, IEEE Transactions on Image Processing.

[2]  Jean-Yves Tourneret,et al.  Unsupervised Unmixing of Hyperspectral Images Accounting for Endmember Variability , 2014, IEEE Transactions on Image Processing.

[3]  Antonio J. Plaza,et al.  Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[4]  Alfonso Fernández-Manso,et al.  Spectral unmixing , 2012 .

[5]  José M. Bioucas-Dias,et al.  Collaborative sparse regression using spatially correlated supports - Application to hyperspectral unmixing , 2014, IEEE Transactions on Image Processing.

[6]  Yin Zhang,et al.  A Compressive Sensing and Unmixing Scheme for Hyperspectral Data Processing , 2012, IEEE Transactions on Image Processing.

[7]  José M. Bioucas-Dias,et al.  Does independent component analysis play a role in unmixing hyperspectral data? , 2003, IEEE Transactions on Geoscience and Remote Sensing.

[8]  K. C. Ho,et al.  Endmember Variability in Hyperspectral Analysis: Addressing Spectral Variability During Spectral Unmixing , 2014, IEEE Signal Processing Magazine.

[9]  Antonio J. Plaza,et al.  On Endmember Identification in Hyperspectral Images Without Pure Pixels: A Comparison of Algorithms , 2011, Journal of Mathematical Imaging and Vision.

[10]  Mark Berman,et al.  Semi-realistic simulations of natural hyperspectral scenes , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[11]  Jun Zhou,et al.  Hyperspectral Unmixing via $L_{1/2}$ Sparsity-Constrained Nonnegative Matrix Factorization , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Rick Chartrand,et al.  Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[13]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[14]  Felix Hueber,et al.  Hyperspectral Imaging Techniques For Spectral Detection And Classification , 2016 .

[15]  José M. Bioucas-Dias,et al.  Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Kai Siedenburg,et al.  Social Sparsity! Neighborhood Systems Enrich Structured Shrinkage Operators , 2013, IEEE Transactions on Signal Processing.

[17]  Chein-I. Chang Hyperspectral Imaging: Techniques for Spectral Detection and Classification , 2003 .

[18]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[19]  Jocelyn Chanussot,et al.  Blind Hyperspectral Unmixing Using an Extended Linear Mixing Model to Address Spectral Variability , 2016, IEEE Transactions on Image Processing.

[20]  Gaofeng Meng,et al.  Spectral Unmixing via Data-Guided Sparsity , 2014, IEEE Transactions on Image Processing.

[21]  Antonio J. Plaza,et al.  Automated Extraction of Image-Based Endmember Bundles for Improved Spectral Unmixing , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.