Image Analysis and Reconstruction using a Wavelet Transform Constructed from a Reducible Representation of the Euclidean Motion Group

Inspired by the early visual system of many mammalians we consider the construction of-and reconstruction from- an orientation score $${\it U_f}:\mathbb{R}^2 \times S^{1} \to \mathbb{C}$$ as a local orientation representation of an image, $$f:\mathbb{R}^2 \to \mathbb{R}$$. The mapping $$f\mapsto {\it U_f}$$ is a wavelet transform $$\mathcal{W}_{\psi}$$ corresponding to a reducible representation of the Euclidean motion group onto $$\mathbb{L}_{2}(\mathbb{R}^2)$$ and oriented wavelet $$\psi \in \mathbb{L}_{2}(\mathbb{R}^2)$$. This wavelet transform is a special case of a recently developed generalization of the standard wavelet theory and has the practical advantage over the usual wavelet approaches in image analysis (constructed by irreducible representations of the similitude group) that it allows a stable reconstruction from one (single scale) orientation score. Since our wavelet transform is a unitary mapping with stable inverse, we directly relate operations on orientation scores to operations on images in a robust manner.Furthermore, by geometrical examination of the Euclidean motion group $$G=\mathbb{R}^2 \mathbb{R}\times \mathbb{T}$$, which is the domain of our orientation scores, we deduce that an operator Φ on orientation scores must be left invariant to ensure that the corresponding operator $$\mathcal{W}_{\psi}^{-1}\Phi \mathcal{W}_{\psi}$$ on images is Euclidean invariant. As an example we consider all linear second order left invariant evolutions on orientation scores corresponding to stochastic processes on G. As an application we detect elongated structures in (medical) images and automatically close the gaps between them.Finally, we consider robust orientation estimates by means of channel representations, where we combine robust orientation estimation and learning of wavelets resulting in an auto-associative processing of orientation features. Here linear averaging of the channel representation is equivalent to robust orientation estimation and an adaptation of the wavelet to the statistics of the considered image class leads to an auto-associative behavior of the system.

[1]  Lance R. Williams,et al.  Analytic solution of stochastic completion fields , 1995, Biological Cybernetics.

[2]  Maurice Duits,et al.  A functional Hilbert space approach to the theory of wavelets , 2004 .

[3]  Luc Florack,et al.  On the Axioms of Scale Space Theory , 2004, Journal of Mathematical Imaging and Vision.

[4]  D. Mumford Elastica and Computer Vision , 1994 .

[5]  Fjl Frans Martens Spaces of analytic functions on inductive/projective limits of Hilbert spaces , 1988 .

[6]  Remco Duits,et al.  From Stochastic Completion Fields to Tensor Voting , 2005, DSSCV.

[7]  Per-Erik Forssén,et al.  Low and Medium Level Vision Using Channel Representations , 2004 .

[8]  Tai Sing Lee,et al.  Image Representation Using 2D Gabor Wavelets , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  M. Duits A functional Hilbert space approach to frame transforms and wavelet transforms , 2004 .

[10]  M. Van Ginkel,et al.  Image analysis using orientation space based on steerable filters , 2002 .

[11]  Remco Duits,et al.  Image processing via shift-twist invariant operations on orientation bundle functions , 2004, ICPR 2004.

[12]  Derek W. Robinson,et al.  Analysis on Lie Groups with Polynomial Growth , 2003 .

[13]  Christopher Isham,et al.  Coherent states for n‐dimensional Euclidean groups E(n) and their application , 1991 .

[14]  M. Sugiura Unitary Representations and Harmonic Analysis , 1990 .

[15]  Lance R. Williams,et al.  A rotation and translation invariant discrete saliency network , 2001, Biological Cybernetics.

[16]  Gösta H. Granlund,et al.  Sparse Feature Maps in a Scale Hierarchy , 2000, AFPAC.

[17]  S. Twareque Ali,et al.  A general theorem on square-integrability: Vector coherent states , 1998 .

[18]  A. Korányi DEUX COURS D'ANALYSE HARMONIQUE (École d'Été d'Analyse Harmonique de Tunis 1984) , 1988 .

[19]  Michael Felsberg,et al.  Channel smoothing: efficient robust smoothing of low-level signal features , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Luc Florack,et al.  Image Structure , 1997, Computational Imaging and Vision.

[21]  A. Grossmann,et al.  Transforms associated to square integrable group representations. I. General results , 1985 .

[22]  Pierre Vandergheynst,et al.  Directional Wavelets Revisited: Cauchy Wavelets and Symmetry Detection in Patterns , 1999 .

[23]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[24]  Martin Greiner,et al.  Wavelets , 2018, Complex..

[25]  R. W. van der Put Methods for 3D orientation analysis and their application to the study of arterial remodeling , 2005 .

[26]  King-Sun Fu,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Publication Information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  S.J.L. van Eijndhoven,et al.  Some results on Hankel invariant distribution spaces , 1983 .

[28]  Max A. Viergever,et al.  Invertible Apertured Orientation Filters in Image Analysis , 1999, International Journal of Computer Vision.

[29]  Remco Duits Perceptual organization in image analysis : a mathematical approach based on scale, orientation and curvature , 2005 .

[30]  B. H. Romeny,et al.  Invertible Orientation Scores as an Application of Generalized Wavelet Theory , 2007, Pattern Recognition and Image Analysis.

[31]  K. Thornber,et al.  Analytic solution of stochastic completion fields , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[32]  Steven W. Zucker,et al.  Sketches with Curvature: The Curve Indicator Random Field and Markov Processes , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  C. Bajaj Algebraic Geometry and its Applications , 1994 .

[34]  Jacques Faraut,et al.  Deux cours d'analyse harmonique : École d'été d'analyse harmonique de Tunis, 1984 , 1987 .

[35]  Andreas Rieder,et al.  Wavelets: Theory and Applications , 1997 .

[36]  D. Ts'o,et al.  Functional organization of primate visual cortex revealed by high resolution optical imaging. , 1990, Science.

[37]  Gösta H. Granlund,et al.  An Associative Perception-Action Structure Using a Localized Space Variant Information Representation , 2000, AFPAC.

[38]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .