β-bungarotoxin-induced depletion of synaptic vesicles at the mammalian neuromuscular junction

[1]  C. Rose,et al.  Induction by β‐bungarotoxin of apoptosis in cultured hippocampal neurons is mediated by Ca2+‐dependent formation of reactive oxygen species , 2003 .

[2]  J. García-Sancho,et al.  Calcium Influx through Receptor-operated Channel Induces Mitochondria-triggered Paraptotic Cell Death* 210 , 2003, The Journal of Biological Chemistry.

[3]  C. Montecucco,et al.  Taipoxin induces F‐actin fragmentation and enhances release of catecholamines in bovine chromaffin cells , 2003, Journal of neurochemistry.

[4]  E. Gulbins,et al.  Role of Mitochondria in Apoptosis , 2003, Experimental physiology.

[5]  V. Ganitkevich The Role of Mitochondria in Cytoplasmic Ca2+ Cycling , 2003, Experimental physiology.

[6]  C. Becker,et al.  β‐Bungarotoxin is a potent inducer of apoptosis in cultured rat neurons by receptor‐mediated internalization , 2001, The European journal of neuroscience.

[7]  J. Coffield,et al.  Cleavage of intracellular substrates of botulinum toxins A, C, and D in a mammalian target tissue. , 2001, The Journal of pharmacology and experimental therapeutics.

[8]  C. Montecucco,et al.  How do presynaptic PLA2 neurotoxins block nerve terminals? , 2000, Trends in biochemical sciences.

[9]  S. Budd,et al.  Mitochondria and neuronal survival. , 2000, Physiological reviews.

[10]  J. Harris,et al.  Nerve Terminal Damage by β-Bungarotoxin : Its Clinical Significance , 1999 .

[11]  S. Lin-Shiau,et al.  Multiple Types of Ca2+ Channels in Mouse Motor Nerve Terminals , 1997, The European journal of neuroscience.

[12]  E. Bülbring OBSERVATIONS ON THE ISOLATED PHRENIC NERVE DIAPHRAGM PREPARATION OF THE RAT , 1997, British journal of pharmacology.

[13]  H. Nishio,et al.  Ca(2+)-independent fusion of synaptic vesicles with phospholipase A2-treated presynaptic membranes in vitro. , 1996, The Biochemical journal.

[14]  J. Brown,et al.  Clostridial Neurotoxins and Substrate Proteolysis in Intact Neurons , 1996, The Journal of Biological Chemistry.

[15]  J. Dolly,et al.  Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: correlation with its blockade of catecholamine release. , 1996, Biochemistry.

[16]  W. Betz,et al.  Monitoring of Black Widow Spider Venom (BWSV) induced exo- and endocytosis in living frog motor nerve terminals with FM1-43 , 1995, Neuropharmacology.

[17]  R. Tsien,et al.  Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  J. Luebke,et al.  Exocytotic Ca2+ channels in mammalian central neurons , 1995, Trends in Neurosciences.

[19]  R. Tsien,et al.  Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. , 1994, Science.

[20]  I. I. Kaiser,et al.  Identification of the site at which phospholipase A2 neurotoxins localize to produce their neuromuscular blocking effects. , 1993, Toxicon : official journal of the International Society on Toxinology.

[21]  B. Bean,et al.  A new conus peptide ligand for mammalian presynaptic Ca2+ channels , 1992, Neuron.

[22]  A. Tu Reptile venoms and toxins , 1991 .

[23]  A. Desideri,et al.  Beta-bungarotoxin-mediated liposome fusion: spectroscopic characterization by fluorescence and ESR. , 1990, Biochemistry.

[24]  S. Parsons,et al.  Selectivity and Regulation in the Phospholipase A2‐Mediated Attack on Cholinergic Synaptic Vesicles by β‐Bungarotoxin , 1986, Journal of neurochemistry.

[25]  R. Fesce,et al.  Effects of black widow spider venom and Ca2+ on quantal secretion at the frog neuromuscular junction , 1986, The Journal of general physiology.

[26]  D. Nicholls,et al.  The mechanism of action of beta-bungarotoxin at the presynaptic plasma membrane. , 1986, The Biochemical journal.

[27]  D. Nicholls,et al.  Bioenergetic actions of beta-bungarotoxin, dendrotoxin and bee-venom phospholipase A2 on guinea-pig synaptosomes. , 1985, The Biochemical journal.

[28]  J. Harris Phospholipases in snake venoms and their effects on nerve and muscle. , 1985, Pharmacology & therapeutics.

[29]  P. Corr,et al.  Lysophosphatidyl choline potentiates Ca2+ accumulation in rat cardiac myocytes. , 1983, The American journal of physiology.

[30]  J. Strum,et al.  A method demonstrating motor endplates for light and electron microscopy , 1982, Journal of Neuroscience Methods.

[31]  J. Marsal,et al.  Binding of β-bungarotoxin toTorpedo electric organ synaptosomes. A high resolution autoradiographic study , 1982, Neuroscience.

[32]  F. Grohovaz,et al.  Freeze-fracture studies of frog neuromuscular junctions during intense release of neurotransmitter. I. Effects of black widow spider venom and Ca2+-free solutions on the structure of the active zone , 1979, The Journal of cell biology.

[33]  R. Miledi,et al.  Acute muscle denervation induced by β-bungarotoxin , 1976, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[34]  B. Howard,et al.  Evidence that β-bungarotoxin acts at the exterior of nerve terminals , 1976, Brain Research.

[35]  J. Wernicke,et al.  THE MECHANISM OF ACTION OF β‐BUNGAROTOXIN , 1975 .

[36]  C. Y. Lee,et al.  Studies of the presynaptic effect of -bungarotoxin on neuromuscular transmission. , 1973, The Journal of pharmacology and experimental therapeutics.

[37]  I. Chen,et al.  Ultrastructural changes in the motor nerve terminals caused by β-bungarotoxin , 1970, Virchows Archiv B Cell Pathology.

[38]  M. Karnovsky,et al.  A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron-microscopy , 1965 .

[39]  C. Y. Lee,et al.  ISOLATION OF NEUROTOXINS FROM THE VENOM OF BUNGARUS MULTICINCTUS AND THEIR MODES OF NEUROMUSCULAR BLOCKING ACTION. , 1963, Archives internationales de pharmacodynamie et de therapie.