Real-time experiential geosimulation in virtual reality with immersion-emission

The aim of this work is to develop closer connectivity between real, lived human encounters in everyday life and geosimulation that might be tasked and designed to experiment with synthetic variations of those experiences. In particular, we propose that geosimulation can be used in close connection with virtual geographic environments and virtual reality environments to build human-in-the-loop interactivity between real people and geosimulation of the geographies that they experience. We introduce a novel scheme based on immersion and emission by socio-visual gaze to facilitate connectivity between human users and geosimulation. To examine the utility of the approach, we present a worked demonstration for examining road-crossing behavior in downtown settings for Brooklyn, NY.

[1]  Y. Tuan,et al.  Place: An Experiential Perspective , 1975 .

[2]  Peter Willemsen,et al.  Does the Quality of the Computer Graphics Matter when Judging Distances in Visually Immersive Environments? , 2004, Presence: Teleoperators & Virtual Environments.

[3]  Lucas Kovar,et al.  Flexible automatic motion blending with registration curves , 2003, SCA '03.

[4]  Henry Sowizral,et al.  Scene Graphs in the New Millennium , 2000, IEEE Computer Graphics and Applications.

[5]  H. Couclelis Why I no longer work with Agents , 2001 .

[6]  Michael Batty,et al.  Modelling and prediction in a complex world , 2005 .

[7]  Michael Batty,et al.  Virtual Environments Begin to Embrace Process‐based Geographic Analysis , 2015, Trans. GIS.

[8]  Paul M. Torrens,et al.  Cellular Automata and Multi-agent Systems as Planning Support Tools , 2003 .

[9]  Craig W. Reynolds Steering Behaviors For Autonomous Characters , 1999 .

[10]  T. Geisel,et al.  The scaling laws of human travel , 2006, Nature.

[11]  Anjul Patney,et al.  Towards virtual reality infinite walking , 2018, ACM Trans. Graph..

[12]  K. Kitazawa,et al.  Pedestrian Vision and Collision Avoidance Behavior: Investigation of the Information Process Space of Pedestrians Using an Eye Tracker , 2010 .

[13]  P. Torrens,et al.  Geosimulation: Automata-based modeling of urban phenomena , 2004 .

[14]  Suzana Dragicevic,et al.  Representing Complex Evolving Spatial Networks: Geographic Network Automata , 2020, ISPRS Int. J. Geo Inf..

[15]  P. Torrens,et al.  Building Agent‐Based Walking Models by Machine‐Learning on Diverse Databases of Space‐Time Trajectory Samples , 2011 .

[16]  Paul M. Torrens,et al.  Exploring the Micro-Social Geography of Children’s Interactions in Preschool , 2013 .

[17]  Paul M. Torrens,et al.  Intertwining agents and environments , 2015, Environmental Earth Sciences.

[18]  Paul M. Torrens,et al.  Slipstreaming human geosimulation in virtual geographic environments , 2015, Ann. GIS.

[19]  Joon-Seok Kim,et al.  Advancing Simulation Experimentation Capabilities with Runtime Interventions , 2019, 2019 Spring Simulation Conference (SpringSim).

[20]  Ranga Raju Vatsavai,et al.  pFUTURES: A Parallel Framework for Cellular Automaton Based Urban Growth Models , 2016, GIScience.

[21]  Dinesh Manocha,et al.  Interactive Navigation of Heterogeneous Agents Using Adaptive Roadmaps , 2009, IEEE Transactions on Visualization and Computer Graphics.

[22]  Joon-Seok Kim,et al.  Data-driven mobility models for COVID-19 simulation , 2020, ARIC@SIGSPATIAL.

[23]  Andrew T. Crooks,et al.  Modeling the emergence of riots: A geosimulation approach , 2017, Comput. Environ. Urban Syst..

[24]  Paul M. Torrens,et al.  An extensible simulation environment and movement metrics for testing walking behavior in agent-based models , 2012, Comput. Environ. Urban Syst..

[25]  Isaac Sir Newton Opticks, or, A treatise of the reflections, refractions, inflections & colours of light , 1933 .

[26]  Paul M. Torrens,et al.  Exploring behavioral regions in agents’ mental maps , 2015, The Annals of Regional Science.

[27]  P. Torrens,et al.  Modeling Geographic Behavior in Riotous Crowds , 2013 .

[28]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[29]  Ranxiao Frances Wang,et al.  Where we Go With a Little Good Information , 1999 .

[30]  J. Loomis,et al.  Immersive virtual environment technology as a basic research tool in psychology , 1999, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[31]  Stephen John Turner,et al.  Cloning Agent-Based Simulation , 2017, ACM Trans. Model. Comput. Simul..

[32]  Zoran Popovic,et al.  Motion warping , 1995, SIGGRAPH.

[33]  A. Turner,et al.  From Isovists to Visibility Graphs: A Methodology for the Analysis of Architectural Space , 2001 .

[34]  P. A. Prince,et al.  Lévy flight search patterns of wandering albatrosses , 1996, Nature.

[35]  Alan Penn,et al.  Encoding Natural Movement as an Agent-Based System: An Investigation into Human Pedestrian Behaviour in the Built Environment , 2002 .

[36]  Paul M. Torrens,et al.  High-resolution space–time processes for agents at the built–human interface of urban earthquakes , 2014, Int. J. Geogr. Inf. Sci..

[37]  Scott D. Roth,et al.  Ray casting for modeling solids , 1982, Comput. Graph. Image Process..

[38]  Roger G. Ghanem,et al.  Accelerating agent-based computation of complex urban systems , 2012, Int. J. Geogr. Inf. Sci..

[39]  Paul M. Torrens,et al.  Geographic Automata Systems , 2005, Int. J. Geogr. Inf. Sci..

[40]  Peter M. Allen,et al.  IntroductionKnowledge and complexity , 2005 .

[41]  P. Torrens Moving Agent Pedestrians Through Space and Time , 2012 .

[42]  Ranxiao Frances Wang,et al.  Seeking one’s heading through eye movements , 2000, Psychonomic bulletin & review.

[43]  Paul M. Torrens,et al.  High-fidelity behaviours for model people on model streetscapes , 2014, Ann. GIS.

[44]  Michael Batty Virtual Geographic Environments: a primer , 2011 .

[45]  Paul M. Torrens,et al.  A computational sandbox with human automata for exploring perceived egress safety in urban damage scenarios , 2018, Int. J. Digit. Earth.

[46]  Joe Faith,et al.  Why Gliders Don't Exist: Anti-Reductionism and Emergence , 1998 .

[47]  Michael Batty,et al.  Modeling Complexity : The Limits to Prediction , 2001 .

[48]  Paul A. Braren,et al.  Wayfinding on foot from information in retinal, not optical, flow. , 1992, Journal of experimental psychology. General.

[49]  James E. Cutting,et al.  Perceptual Artifacts and Phenomena: Gibson's Role in the 20th Century , 1993 .

[50]  Hamdi Kavak,et al.  Modeling the Modeler: An Empirical Study on how Modelers Learn to Create Simulations , 2020, 2020 Spring Simulation Conference (SpringSim).

[51]  Arthur Appel,et al.  Some techniques for shading machine renderings of solids , 1968, AFIPS Spring Joint Computing Conference.

[52]  Vilis O. Nams,et al.  The VFractal: a new estimator for fractal dimension of animal movement paths , 1996, Landscape Ecology.