High Kinetic Inductance Superconducting Nanowire Resonators for Circuit QED in a Magnetic Field

We present superconducting microwave-frequency resonators based on NbTiN nanowires. The small cross section of the nanowires minimizes vortex generation, making the resonators resilient to magnetic fields. Measured intrinsic quality factors exceed $2\times 10^5$ in a $6$ T in-plane magnetic field, and $3\times 10^4$ in a $350$ mT perpendicular magnetic field. Due to their high characteristic impedance, these resonators are expected to develop zero-point voltage fluctuations one order of magnitude larger than in standard coplanar waveguide resonators. These properties make the nanowire resonators well suited for circuit QED experiments needing strong coupling to quantum systems with small electric dipole moments and requiring a magnetic field, such as electrons in single and double quantum dots.

[1]  M. Affronte,et al.  YBa2Cu3O7 microwave resonators for strong collective coupling with spin ensembles , 2015, 1503.06145.

[2]  T. Kontos,et al.  Coherent coupling of a single spin to microwave cavity photons , 2015, Science.

[3]  L. DiCarlo,et al.  Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates , 2015, 1502.04082.

[4]  Franco Nori,et al.  Charge Number Dependence of the Dephasing Rates of a Graphene Double Quantum Dot in a Circuit QED Architecture. , 2013, Physical review letters.

[5]  J. P. Dehollain,et al.  Storing quantum information for 30 seconds in a nanoelectronic device. , 2014, Nature nanotechnology.

[6]  S. Kubatkin,et al.  Galvanically split superconducting microwave resonators for introducing internal voltage bias , 2014 .

[7]  Leif Grönberg,et al.  Kinetic inductance magnetometer , 2014, Nature Communications.

[8]  D. Loss,et al.  Circuit QED with hole-spin qubits in Ge/Si nanowire quantum dots , 2013, 1306.3596.

[9]  T. Klapwijk,et al.  Microwave Properties of Superconducting Atomic-Layer Deposited TiN Films , 2012, IEEE Transactions on Applied Superconductivity.

[10]  L. DiCarlo,et al.  Probing dynamics of an electron-spin ensemble via a superconducting resonator. , 2012, Physical review letters.

[11]  F. Nori,et al.  Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems , 2012, 1204.2137.

[12]  S. Kubatkin,et al.  Magnetic field resilient superconducting fractal resonators for coupling to free spins , 2012 .

[13]  Jacob M. Taylor,et al.  Circuit quantum electrodynamics with a spin qubit , 2012, Nature.

[14]  F. Nori,et al.  Strong coupling of a spin qubit to a superconducting stripline cavity , 2012, 1204.4732.

[15]  E. Lucero,et al.  Planar Superconducting Resonators with Internal Quality Factors above One Million , 2012, 1201.3384.

[16]  Michael Marthaler,et al.  Strong coupling of spin qubits to a transmission line resonator. , 2011, Physical review letters.

[17]  J. I. Vestgården,et al.  Mechanism for flux guidance by micrometric antidot arrays in superconducting films , 2011, 1110.5473.

[18]  M. Beck,et al.  Dipole coupling of a double quantum dot to a microwave resonator. , 2011, Physical review letters.

[19]  F. Wellstood,et al.  An analysis method for asymmetric resonator transmission applied to superconducting devices , 2011, 1108.3117.

[20]  D. Koelle,et al.  Reducing vortex losses in superconducting microwave resonators with microsphere patterned antidot arrays , 2011, 1110.6332.

[21]  D. Koelle,et al.  Improving the performance of superconducting microwave resonators in magnetic fields , 2011, 1101.3185.

[22]  H. Alloul Introduction to Superconductivity , 2011 .

[23]  Luigi Frunzio,et al.  Tunable superconducting nanoinductors , 2010, Nanotechnology.

[24]  L Frunzio,et al.  High-cooperativity coupling of electron-spin ensembles to superconducting cavities. , 2010, Physical review letters.

[25]  J. Martinis,et al.  Microwave response of vortices in superconducting thin films of Re and Al , 2008, 0812.3645.

[26]  UK.,et al.  Magnetic field tuning of coplanar waveguide resonators , 2008, 0805.2818.

[27]  Jonas Zmuidzinas,et al.  Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators , 2008, 0802.4457.

[28]  Erik Lucero,et al.  Microwave dielectric loss at single photon energies and millikelvin temperatures , 2008, 0802.2404.

[29]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[30]  G. Burkard,et al.  Ultra-long distance interaction between spin qubits , 2006, cond-mat/0603119.

[31]  R. Wördenweber,et al.  Guidance of vortices and the vortex ratchet effect in high-T c superconducting thin films obtained by arrangement of antidots , 2004 .

[32]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[33]  M. Lukin,et al.  Mesoscopic cavity quantum electrodynamics with quantum dots , 2003, quant-ph/0309106.

[34]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[35]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[36]  Wu,et al.  Field variation of the penetration depth in ceramic Y1Ba2Cu3Oy. , 1988, Physical review. B, Condensed matter.