ARGONAUT: AlgoRithms for Global Optimization of coNstrAined grey-box compUTational problems

The algorithmic framework ARGONAUT is presented for the global optimization of general constrained grey-box problems. ARGONAUT incorporates variable selection, bounds tightening and constrained sampling techniques, in order to develop accurate surrogate representations of unknown equations, which are globally optimized. ARGONAUT is tested on a large set of test problems for constrained global optimization with a large number of input variables and constraints. The performance of the presented framework is compared to that of existing techniques for constrained derivative-free optimization.

[1]  Julio R. Banga,et al.  Scatter search for chemical and bio-process optimization , 2007, J. Glob. Optim..

[2]  Simon P. Wilson,et al.  Using DIRECT to Solve an Aircraft Routing Problem , 2002, Comput. Optim. Appl..

[3]  Sébastien Le Digabel,et al.  Use of quadratic models with mesh-adaptive direct search for constrained black box optimization , 2011, Optim. Methods Softw..

[4]  Zukui Li,et al.  Optimal scenario reduction framework based on distance of uncertainty distribution and output performance: I. Single reduction via mixed integer linear optimization , 2014, Comput. Chem. Eng..

[5]  Selen Cremaschi,et al.  Process synthesis of biodiesel production plant using artificial neural networks as the surrogate models , 2012, Comput. Chem. Eng..

[6]  Nils-Hassan Quttineh,et al.  An adaptive radial basis algorithm (ARBF) for expensive black-box mixed-integer constrained global optimization , 2008 .

[7]  Marianthi G. Ierapetritou,et al.  Surrogate-Based Optimization of Expensive Flowsheet Modeling for Continuous Pharmaceutical Manufacturing , 2013, Journal of Pharmaceutical Innovation.

[8]  M. Powell,et al.  Approximation theory and methods , 1984 .

[9]  Christodoulos A. Floudas,et al.  A review of recent advances in global optimization , 2009, J. Glob. Optim..

[10]  C. Floudas Handbook of Test Problems in Local and Global Optimization , 1999 .

[11]  Charles Audet,et al.  A variance-based method to rank input variables of the Mesh Adaptive Direct Search algorithm , 2013, Optim. Lett..

[12]  Christodoulos A. Floudas,et al.  Deterministic Global Optimization , 1990 .

[13]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[14]  Christodoulos A. Floudas,et al.  Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption , 2017, J. Glob. Optim..

[15]  Charles Audet,et al.  Spent potliner treatment process optimization using a MADS algorithm , 2005 .

[16]  I. Grossmann,et al.  An algorithm for the use of surrogate models in modular flowsheet optimization , 2008 .

[17]  W Y Zhang,et al.  Discussion on `Sure independence screening for ultra-high dimensional feature space' by Fan, J and Lv, J. , 2008 .

[18]  Xin Yao,et al.  Search biases in constrained evolutionary optimization , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[19]  Christine A. Shoemaker,et al.  Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization problems , 2014, J. Glob. Optim..

[20]  Jianqing Fan,et al.  Sure independence screening in generalized linear models with NP-dimensionality , 2009, The Annals of Statistics.

[21]  Jianqing Fan,et al.  Sure independence screening for ultrahigh dimensional feature space , 2006, math/0612857.

[22]  Gintaras V. Reklaitis,et al.  Simulation-based optimization with surrogate models - Application to supply chain management , 2005, Comput. Chem. Eng..

[23]  Richard C. Baliban,et al.  Modeling, Simulation, and Optimization of Postcombustion CO2 Capture for Variable Feed Concentration and Flow Rate. 2. Pressure Swing Adsorption and Vacuum Swing Adsorption Processes , 2012 .

[24]  Andy J. Keane,et al.  Recent advances in surrogate-based optimization , 2009 .

[25]  Mattias Björkman,et al.  Global Optimization of Costly Nonconvex Functions Using Radial Basis Functions , 2000 .

[26]  Galo A. C. Le Roux,et al.  Improvements in surrogate models for process synthesis. Application to water network system design , 2013, Comput. Chem. Eng..

[27]  Jack P. C. Kleijnen,et al.  Constrained optimization in expensive simulation: Novel approach , 2010, Eur. J. Oper. Res..

[28]  Christodoulos A. Floudas,et al.  ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations , 2014, Journal of Global Optimization.

[29]  R. Regis Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points , 2014 .

[30]  Charles Audet,et al.  Comparison of derivative-free optimization methods for groundwater supply and hydraulic capture community problems , 2008 .

[31]  Christodoulos A. Floudas,et al.  Finding all solutions of nonlinearly constrained systems of equations , 1995, J. Glob. Optim..

[32]  Peter Benner,et al.  Using surrogate models for efficient optimization of simulated moving bed chromatography , 2014, Comput. Chem. Eng..

[33]  M. Patriksson,et al.  A method for simulation based optimization using radial basis functions , 2010 .

[34]  Layne T. Watson,et al.  Efficient global optimization algorithm assisted by multiple surrogate techniques , 2012, Journal of Global Optimization.

[35]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .

[36]  Sébastien Le Digabel,et al.  Algorithm xxx : NOMAD : Nonlinear Optimization with the MADS algorithm , 2010 .

[37]  Marianthi G. Ierapetritou,et al.  Derivative‐free optimization for expensive constrained problems using a novel expected improvement objective function , 2014 .

[38]  M. Powell A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation , 1994 .

[39]  Christodoulos A. Floudas,et al.  GloMIQO: Global mixed-integer quadratic optimizer , 2012, Journal of Global Optimization.

[40]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[41]  Katya Scheinberg,et al.  Introduction to derivative-free optimization , 2010, Math. Comput..

[42]  Nikolaos V. Sahinidis,et al.  Derivative-free optimization: a review of algorithms and comparison of software implementations , 2013, J. Glob. Optim..

[43]  Christodoulos A. Floudas,et al.  Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO , 2016, Eur. J. Oper. Res..

[44]  Oskar von Stryk,et al.  A mixed-integer simulation-based optimization approach with surrogate functions in water resources management , 2008 .

[45]  Eric L. First,et al.  Nationwide, Regional, and Statewide CO2 Capture, Utilization, and Sequestration Supply Chain Network Optimization , 2014 .

[46]  Edoardo Amaldi,et al.  PGS-COM: A hybrid method for constrained non-smooth black-box optimization problems: Brief review, novel algorithm and comparative evaluation , 2014, Comput. Chem. Eng..

[47]  Christos T. Maravelias,et al.  Surrogate‐based superstructure optimization framework , 2011 .

[48]  Christine A. Shoemaker,et al.  Constrained Global Optimization of Expensive Black Box Functions Using Radial Basis Functions , 2005, J. Glob. Optim..

[49]  Andy J. Keane,et al.  Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .

[50]  Y. Y. Huang,et al.  A surrogate-based optimization method with RBF neural network enhanced by linear interpolation and hybrid infill strategy , 2014, Optim. Methods Softw..

[51]  Jack P. C. Kleijnen,et al.  Constrained Optimization in Simulation: A Novel Approach , 2008 .

[52]  Jack P. C. Kleijnen,et al.  Kriging Metamodeling in Simulation: A Review , 2007, Eur. J. Oper. Res..

[53]  Christine A. Shoemaker,et al.  Estimation of plume distribution for carbon sequestration using parameter estimation with limited monitoring data , 2013 .