No d Orbitals but Walsh Diagrams and Maybe Banana Bonds: Chemical Bonding in Phosphines, Phosphine Oxides, and Phosphonium Ylides.

[1]  J. Bollinger,et al.  Experimental and theoretical studies of the gas-phase protonation of aliphatic phosphine oxides and phosphoramides , 1985 .

[2]  Charles C. Levin Qualitative molecular orbital picture of electronegativity effects on XH3 inversion barriers , 1975 .

[3]  J. D. Petke,et al.  Comparative SCF and CI studies of NH3 and PH3 , 1973 .

[4]  W. Schoeller,et al.  Bond stretch isomerism in the silicon analogs of bicyclo[1.1.0]butane and of [1.1.1]propellane. Consequence of orbital nonhybridization , 1987 .

[5]  A. J. Arduengo,et al.  A new inversion process at Group VA (Group 15) elements. Edge inversion through a planar T-shaped structure. , 1986, Journal of the American Chemical Society.

[6]  G. Pimentel The Bonding of Trihalide and Bifluoride Ions by the Molecular Orbital Method , 1951 .

[7]  R. P. Messmer,et al.  Theoretical evidence for “bent bonds” in the co2 molecule , 1986 .

[8]  A. Grand,et al.  Anisotropy of the 1J(PSe) spin-spin coupling. X-ray and liquid crystal NMR study of trimethylphosphine selenide , 1980 .

[9]  W. Goddard,et al.  Generalized valence bond description of bonding in low-lying states of molecules , 1973 .

[10]  K. Mitchell Use of outer d orbitals in bonding , 1969 .

[11]  G. Trinquier,et al.  Trans-bending at double bonds. Occurrence and extent , 1989 .

[12]  Robert L. Kuczkowski,et al.  Molecular structures of gas‐phase polyatomic molecules determined by spectroscopic methods , 1979 .

[13]  D. L. Cooper,et al.  Chemical Bonding to Hypercoordinate Second-Row Atoms: d Orbital Participation versus Democracy , 1994 .

[14]  Fora Chan,et al.  Calculated inversion barriers and proton affinities for P(CH3)3 and P(C6H5)3 , 1990 .

[15]  D. Rankin,et al.  The Molecular Structure of Trimethyl(methylene)phosphorane in the Gas Phase, Determined by Electron Diffraction , 1977 .

[16]  P. Pulay,et al.  Abinitio investigation of geometry changes during inversion of NH3, NH2F, NHF2, NF3 and PH3, PH2F, PHF2, PF3 , 1977 .

[17]  M. Iwasaki,et al.  Effect of Temperature on the Structure of Gaseous Molecules. Molecular Structure of PCl3 at 300° and 505°K , 1962 .

[18]  R. Haddon Theoretical study of the cyclotriphosphazenes importance of phosphorus d orbitals , 1985 .

[19]  Linus Pauling,et al.  THE NATURE OF THE CHEMICAL BOND. APPLICATION OF RESULTS OBTAINED FROM THE QUANTUM MECHANICS AND FROM A THEORY OF PARAMAGNETIC SUSCEPTIBILITY TO THE STRUCTURE OF MOLECULES , 1931 .

[20]  Werner Kutzelnigg,et al.  Nature of the semipolar XO bond. Comparative ab initio study of H3NO, H2NOH, H3PO, H2POH, H2P(O)F, H2SO, HSOH, HClO, ArO, and related molecules , 1979 .

[21]  Henry A. Bent,et al.  An Appraisal of Valence-bond Structures and Hybridization in Compounds of the First-row elements. , 1961 .

[22]  T. Thirunamachandran,et al.  d‐Orbital Sizes in Sulfur , 1965 .

[23]  J. R. Wazer,et al.  Ab initio LCAO-MO-SCF study of bonding in the simplest phosphorus ylide , 1972 .

[24]  D. Craig,et al.  d Orbitals in Compounds of Second‐Row Elements. I. SF6 , 1962 .

[25]  K. Kuchitsu,et al.  Molecular structure of phosphorus trifluoride studied by gas electron diffraction , 1969 .

[26]  T. S. Cameron,et al.  Investigation of phosphorus–carbon bond lengths in aromatic phosphines. Part I. Crystal and molecular structures of tri-o-tolylphosphine, -phosphine oxide, -phosphine sulphide, and -phosphine selenide , 1975 .

[27]  H. Schaefer,et al.  Molecular and electronic structure of phosphonium cyclopropylide: a theoretical study , 1983 .

[28]  N. D. Epiotis,et al.  The inversion barrier in AH3 molecules , 1976 .

[29]  Mark S. Gordon,et al.  Structure, bonding, and internal rotation in phosphine oxide (H3PO), hydroxyphosphine (H2POH), and hydroxyfluorophosphine (HFPOH) , 1984 .

[30]  A. J. Arduengo,et al.  Direct determination of the barrier to edge inversion at trivalent phosphorus: verification of the edge inversion mechanism , 1986 .

[31]  J. Ángyán,et al.  Bonding between nonbonded sulfur and oxygen atoms in selected organic molecules (a quantum chemical study) , 1987 .

[32]  G. J. Palenik,et al.  The molecular and crystal structure of trimethylamine oxide, (CH3)3NO , 1964 .

[33]  G. Glidewell Molecular configuration in phosphorus compounds: A possible steric rationalisation , 1976 .

[34]  M. Eisenstein,et al.  The role of d functions in ab initio calculations. II. The deformation densities of SO2, NO2, and their ions , 1987 .

[35]  A. Spek Structure of a second monoclinic polymorph of triphenylphosphine oxide , 1987 .

[36]  O. Eisenstein,et al.  Wittig versus Corey-Chaykovsky Reaction. Theoretical study of the reactivity of phosphonium methylide and sulfonium methylide with formaldehyde , 1987 .

[37]  G. Pacchioni,et al.  Metal-phosphine bonding revisited. .sigma.-Basicity, .pi.-acidity, and the role of phosphorus d orbitals in zerovalent metal-phospine complexes , 1992 .

[38]  Colin L. Raston,et al.  Crystal-Structure of Trimethylphosphine Oxide , 1986 .

[39]  Are there pi bonds in benzene? , 1987, Physical review letters.

[40]  R. Gillespie The VSEPR model revisited , 1992 .

[41]  R. D. Harcourt Some valence bond calculations for H2 with 1s and 2p basis sets , 1991 .

[42]  F. Weinhold,et al.  On the role of d orbitals in sulfur hexafluoride , 1986 .

[43]  Frank Weinhold,et al.  Natural localized molecular orbitals , 1985 .

[44]  M. Huggins Atomic Radii. IV. Dependence of Interatomic Distance on Bond Energy1 , 1953 .

[45]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals , 1963 .

[46]  Q. Shen,et al.  Electron diffraction investigation of the molecular structures of gaseous trimethylphosphine oxide, trimethylphosphine sulfide, trimethylarsine oxide, and trimethylarsine sulfide , 1975 .

[47]  R. Appel pπ-Double bonds between phosphorus and carbon - a challenge , 1987 .

[48]  J. I. Musher Theory of bonding in ylides, acetylacetonates and π-cyclopentadienyl compounds , 1974 .

[49]  D. Lide,et al.  Microwave Spectrum, Dipole Moment, and Quadrupole Coupling Constant of Trifluoramine Oxide , 1969 .

[50]  R. Gillespie Multiple bonds and the VSEPR model , 1992 .

[51]  Victor W. Laurie,et al.  Structure and Conformation of Trimethylamine , 1969 .

[52]  C. Thomson,et al.  The structure and acid–base properties of methyl and silyl amines and phosphines: An ab‐initio SCF study , 1982 .

[53]  P. Molina,et al.  Experimental and theoretical study of the R3P+−X− bond: case of betaines derived from N-iminophosphoranes and alkyl isocyanates , 1989 .

[54]  R. E. Rundle On the Problem Structure of XeF4 and XeF2 , 1963 .

[55]  G. Pimentel,et al.  THE BONDING IN THE INERT GAS-HALOGEN COMPOUNDS--THE LIKELY EXISTENCE OF HELIUM DIFLUORIDE , 1963 .

[56]  D. Cruickshank 1077. The rôle of 3d-orbitals in π-bonds between (a) silicon, phosphorus, sulphur, or chlorine and (b) oxygen or nitrogen , 1961 .

[57]  K. Mitchell 3d Orbitals and bonds of second-row atoms. Part III. The cyclic phosphonitrilic halides , 1968 .

[58]  O. Stelzer,et al.  Molecular structures of phosphorus compounds. 6. An electron diffraction study of tert-butylfluorophosphines BuntPF3-n (n = 1, 2, 3) , 1978 .

[59]  D. Lide Microwave spectrum of trimethylarsine , 1959 .

[60]  J. R. Wazer,et al.  Rotational Barrier and Electronic Structure of Monomethylphosphine from Ab Initio LCAO–MO–SCF Calculations , 1972 .

[61]  J. Daly 729. The crystal and molecular structure of triphenylphosphorus , 1964 .

[62]  Xian‐Man Zhang,et al.  Equilibrium acidities and homolytic bond dissociation energies of the acidic carbon-hydrogen bonds in P-substituted triphenylphosphonium cations , 1994 .

[63]  David A. Dixon,et al.  Generalized valence bond description of simple ylides , 1983 .

[64]  L. Andrews,et al.  FTIR spectra of the photolysis products of the phosphine-ozone complex in solid argon , 1987 .

[65]  Force field, dipole moment derivatives, and vibronic constants of benzene from a combination of experimental and ab initio quantum chemical information , 1981 .

[66]  Frank Weinhold,et al.  Natural hybrid orbitals , 1980 .

[67]  D. L. Cooper,et al.  Bent versus .sigma.-.pi. bonds in ethene and ethyne: the spin-coupled point of view , 1993 .

[68]  W. S. Holmes,et al.  Thermochemical properties of phosphorus compounds , 1963 .

[69]  C. H. Patterson,et al.  The role of d functions in sulfur oxide molecules , 1989 .

[70]  Claus Ehrhardt,et al.  Population analysis based on occupation numbers II. Relationship between shared electron numbers and bond energies and characterization of hypervalent contributions , 1985 .

[71]  D. Dixon,et al.  Electronic structure of phosphine. Effect of basic set and correlation on the inversion barrier , 1982 .

[72]  W. Kutzelnigg Orthogonal and non-orthogonal hybrids , 1988 .

[73]  L. Bartell,et al.  Lengths of phosphorus-oxygen and sulfur-oxygen bonds. Extended Hueckel molecular orbital examination of Cruickshank's d.pi.-p.pi. picture , 1970 .

[74]  D. Marynick .pi.-Accepting abilities of phosphines in transition-metal complexes , 1984 .

[75]  David A. Dixon,et al.  The conformations and energetics of simple ylides , 1981 .

[76]  Extending the VSEPR model through the properties of the Laplacian of the charge density , 1989 .

[77]  J. Pople,et al.  The molecular orbital theory of chemical valency IX. The interaction of paired electrons in chemical bonds , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[78]  F. Y. Chu,et al.  ``Forbidden'' rotational spectra of phosphine and arsine , 1974 .

[79]  D. Marynick The inversion barriers of NF3, NCl3, PF3, and PCl3. A theoretical study , 1980 .

[80]  S. Samdal,et al.  THE STRUCTURE OF TRIMETHYLPHOSPHINE SELENIDE BY ELECTRON DIFFRACTION. SYSTEMATIC DIFFERENCES IN STRUCTURE PATTERNS OF TRIMETHYL AND TRIHALO DERIVATIVES OF PHOSPHORUS AND ARSENIC , 1977 .

[81]  P. Schleyer,et al.  Chemical bonding in hypervalent molecules. The dominance of ionic bonding and negative hyperconjugation over d-orbital participation , 1990 .

[82]  W. Schweizer,et al.  Internal molecular motion of triphenylphosphine oxide: analysis of atomic displacement parameters for orthorhombic and monoclinic crystal modifications at 100 and 150 K , 1985 .

[83]  Eamonn F. Healy,et al.  Why life exists , 1982 .

[84]  William A. Goddard,et al.  The Description of Chemical Bonding From AB Initio Calculations , 1978 .

[85]  Brian J. Smith,et al.  Ab initio molecular orbital calculations on sulphur compounds: Part I. Choice and performance of basis set , 1983 .

[86]  S. F. Boys,et al.  Canonical Configurational Interaction Procedure , 1960 .

[87]  E. Magnusson sp Hybridization reconsidered: the composition of orbitals in main-group hydrides , 1984 .

[88]  A. Orpen,et al.  Structural systematics. Part 3. Geometry deformations in triphenylphosphine fragments: a test of bonding theories in phosphine complexes , 1991 .

[89]  A. Guy Orpen,et al.  Structural systematics: the role of P-A .sigma.* orbitals in metal-phosphorus .pi.-bonding in redox-related pairs of M-PA3 complexes (A = R, Ar, OR; R = alkyl) , 1990 .

[90]  T. Thirunamachandran,et al.  3d‐Radial Functions in the sp3d Configuration of Phosphorus , 1967 .

[91]  U. Schubert,et al.  Triphenylphosphonium‐cyclopropylid: Röntgenbeugungsanalyse eines pyramidalen Carbanions , 1982 .

[92]  R. P. Messmer Valence Bonds in the Main Group Elements. Generalized Valence Bond Description , 1991 .

[93]  W. Kutzelnigg,et al.  Theoretical study of the reaction phosphorane .fwdarw. phosphine + hydrogen , 1982 .

[94]  W. Kutzelnigg Chemical Bonding in Higher Main Group Elements , 1984 .

[95]  Robert S. Mulliken,et al.  Formulas and Numerical Tables for Overlap Integrals , 1949 .

[96]  Mark S. Gordon,et al.  Electronic structure of the phosphoryl and thiophosphoryl bonds , 1985 .

[97]  D. Dixon,et al.  The structures and energetics of fluorine-substituted phosphonium ylides , 1986 .

[98]  F. Illas,et al.  On the inversion barriers of group 15 tricoordinate hydrides and halides: An ab initio study using analytical gradients☆ , 1988 .

[99]  J. Bart The crystal and molecular structure of bis(diphenylphosphino)acetylene , 1969 .

[100]  I. Mayer Bond orders and valences: Role of d-orbitals for hypervalent sulphur , 1987 .

[101]  H. Jaffe Studies in Molecular Orbital Theory of Valence. III. Multiple Bonds Involving d-Orbitals , 1954 .

[102]  E. E. Havinga,et al.  Structures of Interhalogen Compounds and Polyhalides , 1961 .

[103]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[104]  M. Ratner,et al.  Some symmetry considerations concerning the role of atomic d orbitals in chemical bonds: discussion and some calculational examples , 1977 .

[105]  W. Kutzelnigg,et al.  Magnetic properties in terms of localized quantities. VI. Small hydrides, fluorides, and homonuclear molecules of phosphorus and silicon , 1987 .

[106]  E. K. Plyler,et al.  VIBRATION–ROTATION BANDS OF AMMONIA: II. THE MOLECULAR DIMENSIONS AND HARMONIC FREQUENCIES OF AMMONIA AND DEUTERATED AMMONIA , 1957 .

[107]  C. H. Patterson,et al.  Valence bonds in the Main Group elements. 2. The sulfur oxides , 1990 .

[108]  G. Häfelinger Theoretical considerations for cyclic (pd)π systems , 1972 .

[109]  N. M. Klimenko,et al.  Hypotheses on the participation of outer vacant atomic orbitals in the formation of molecules in the light of modern quantum-chemical calculations , 1973 .

[110]  R. Sharma,et al.  Tellurium-125 NMR and Moessbauer spectroscopy of tellurium-phosphine complexes and the tellurocyanates , 1987 .

[111]  S. Canuto,et al.  Ab initio studies of the photodissociation in the first excited states of à 1A1 and ã 3A1 of PH3 , 1982 .

[112]  D. B. Chesnut,et al.  A basis set study of the NMR chemical shift in PH3 , 1986 .

[113]  R. Hoffmann,et al.  Molecular orbital theory of pentacoordinate phosphorus , 1972 .

[114]  R. P. Messmer,et al.  A generalized valence bond representation of complete‐active‐space self‐consistent‐field (CASSCF) wave functions , 1993 .

[115]  Andrew Streitwieser,et al.  Theoretical study of carbanions and lithium salts derived from dimethyl sulfone , 1986 .

[116]  Quantum chemical studies of CO, CS and related double bonds , 1977 .

[117]  L. Bartell,et al.  Electron Diffraction Study of the Structure of Trimethylphosphine , 1960 .

[118]  E. Magnusson Substituent effects in second row molecules: Molecular orbital studies of phosphorus(III) compounds , 1985 .

[119]  Yonezo Morino,et al.  Molecular structures of phosphoryl fluoride, phosphoryl chloride, and thiophosphoryl chloride studied by gas electron diffraction , 1971 .

[120]  J. Howell,et al.  A comparative ab-initio molecular orbital study of ammonia oxide and trifluoramine oxide , 1977 .

[121]  R. P. Messmer,et al.  The nature of multiple bonds. 2. Significance of the perfect-pairing approximation , 1993 .

[122]  V. Schomaker,et al.  Some Revisions of the Covalent Radii and the Additivity Rule for the Lengths of Partially Ionic Single Covalent Bonds , 1941 .

[123]  J. Tossell,et al.  Energies of .pi.-acceptor orbitals in silane, phosphine, hydrogen sulfide, and hydrogen chloride and their permethylated derivatives , 1985 .

[124]  R. Hoffmann,et al.  Bonding, proton transfer, and diradical stabilization in phosphonium ylides , 1970 .

[125]  C. E. Brion,et al.  Electronic excitation in phosphorus-containing molecules. iii. valence shell electron energy loss spectra of P(CH3)3, PCl3, PF3, OPCl3 AND PF5 , 1985 .

[126]  A. Bond,et al.  Voltammetry, electron microscopy, and x-ray electron probe microanalysis at the electrode-aqueous electrolyte interface of solid microcrystalline cis- and trans-Cr(CO)2(dpe)2 and trans-[Cr(CO)2(dpe)2]+ complexes (dpe = Ph2PCH2CH2PPh2) mechanically attached to carbon electrodes , 1993 .

[127]  R. Sodhi,et al.  KLL Auger and core-level (1s and 2p) photoelectron shifts in a series of gaseous phosphorus compounds , 1983 .

[128]  R. Kemp,et al.  Lewis base behavior of methylated and fluorinated phosphines. Photoelectron spectroscopic investigation , 1982 .

[129]  K. Hedberg The Molecular Structure of Trisilylamine (SiH3)3N1,2 , 1955 .

[130]  D. Rankin,et al.  An Electron Diffraction Determination of the Molecular Structure of Hexamethylcarbodiphosphorane in the Gas Phase , 1977 .

[131]  W. Bouma,et al.  Detection of the prototype phosphonium (CH2PH3), sulfonium (CH2SH2), and chloronium (CH2ClH) ylides by neutralization-reionization mass spectrometry: a theoretical prediction , 1984 .

[132]  A. Kos,et al.  The importance of negative (anionic) hyperconjugation , 1983 .

[133]  C. A. Coulson,et al.  Present State of Molecular Structure Calculations , 1960 .

[134]  H. Lischka,et al.  A THEORETICAL INVESTIGATION ON THE MODEL WITTIG REACTION PH3CH2 + CH2O → PH3O + C2H4 , 1980 .

[135]  F. Grein,et al.  Ab initio studies on ONH3, ONF3 and OCF3−, using polarization functions and configuration interaction methods , 1983 .

[136]  P. Pulay,et al.  The molecular structure, vibrational force field, spectral frequencies, and infrared intensities of CH3POF2 , 1982 .

[137]  New theoretical description of the carbon-carbon triple bond. , 1986 .

[138]  H. Schaefer,et al.  The anharmonic force fields of PH3, PHF2, PF3, PH5, and H3PO , 1990 .

[139]  B. Kirtman,et al.  Valence shell electron pair interactions in water and hydrogen sulfide. A test of the valence shell electron pair repulsion theory , 1978 .

[140]  L. Radom,et al.  The molecular structure of ammonia oxide (NH3O). An ab initio study , 1977 .

[141]  J. Simons,et al.  An experimental chemist's guide to ab initio quantum chemistry , 1991 .

[142]  G. Trinquier,et al.  Nonclassical distortions at multiple bonds , 1987 .

[143]  R. E. Rundle,et al.  The Structure of Tetramethylammonium Pentaiodide1,1a , 1951 .

[144]  C. Cramer,et al.  An AB initio study of the [1,2] proton transfer from phosphine oxide to phosphinic acid , 1987 .

[145]  B. Munsch,et al.  An ab initio SCF-LCAO-MO study of the phosphorus pyramidal inversion process in phosphine , 1972 .

[146]  Kenneth B. Wiberg,et al.  Origin of rotation and inversion barriers , 1990 .

[147]  A. J. Arduengo,et al.  Periodic trends in the edge and vertex inversion barriers for tricoordinate pnictogen hydrides and fluorides , 1987 .

[148]  P. Surján,et al.  Energy, geometry and valence: The influence of sulfur d-orbital exponent , 1988 .

[149]  David G. Morris Recent Advances in the Chemistry of Ylides , 1983 .

[150]  E. Magnusson The role of d functions in correlated wave functions : main group molecules , 1993 .

[151]  E. Magnusson Substituent effects in second‐row molecules: Basis set performance in calculations of normal valency phosphorus and sulfur compounds , 1984 .

[152]  J. Pople,et al.  Self-consistent molecular orbital methods. 24. Supplemented small split-valence basis sets for second-row elements , 1982 .

[153]  K. Pitzer Bonding in Xenon Fluorides and Halogen Fluorides , 1963, Science.

[154]  H. Schlegel,et al.  A theoretical study of the CSH4 and CPH5 hypersurfaces. Geometries, tautomerization, and dissociation of sulfonium and phosphonium ylides , 1981 .

[155]  A. Veillard,et al.  Bonding in phosphineborane and phosphine oxide: an Ab initio SCF–LCAO–MO study , 1970 .

[156]  I. Ro,et al.  Fragment analysis of molecular electronic energies. I. Theory , 1987 .

[157]  H. Lischka Electronic structure and proton affinity of methylenephosphorane by ab initio methods including electron correlation , 1977 .

[158]  W. Bouma,et al.  Ylides and ylidions: a comparative study of unusual gas-phase structures , 1987 .

[159]  K. Hedberg,et al.  Electron‐Diffraction Investigation of the Molecular Structure of Trifluoramine Oxide, F3NO , 1970 .

[160]  M. Otake,et al.  Microwave spectra of nitrogen trifluoride in the excited vibrational states: Equilibrium structure , 1968 .

[161]  A. Streitwieser,et al.  A study of basis set effects on structures and electronic structures of phosphine oxide and fluorophosphine oxide , 1987 .

[162]  Mark S. Gordon,et al.  Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements , 1980 .

[163]  C. Coulson,et al.  d Electrons and Molecular Bonding , 1969, Nature.

[164]  G. Trinquier,et al.  Theoretical data on the multicoordination of phosphorus and arsenic , 1984 .

[165]  J. Musher A Speculation on New Molecules. , 1963, Science.

[166]  E. Magnusson Hypercoordinate molecules of second-row elements : d functions or d orbitals ? , 1990 .

[167]  J. Cioslowski,et al.  Rigorous interpretation of electronic wave functions. 2. Electronic structures of selected phosphorus, sulfur, and chlorine fluorides and oxides , 1993 .

[168]  M. Hall Valence shell electron pair repulsions and the Pauli exclusion principle , 1978 .

[169]  P. Schleyer,et al.  The anomeric effect with central atoms other than carbon. 1. Strong interactions between nonbonded substituents in polyfluorinated first- and second-row hydrides , 1987 .

[170]  P. Hay Generalized valence bond studies of the electronic structure of SF/sub 2/, SF/sub 4/, and SF/sub 6/ , 1977 .