HAT-P-44b, HAT-P-45b, AND HAT-P-46b: THREE TRANSITING HOT JUPITERS IN POSSIBLE MULTI-PLANET SYSTEMS

We report the discovery by the HATNet survey of three new transiting extrasolar planets orbiting moderately bright (V = 13.2, 12.8, and 11.9) stars. The planets have orbital periods of 4.3012, 3.1290, and 4.4631 days, masses of 0.35, 0.89, and 0.49 M J, and radii of 1.24, 1.43, and 1.28 R J. The stellar hosts have masses of 0.94, 1.26, and 1.28 M ☉. Each system shows significant systematic variations in its residual radial velocities, indicating the possible presence of additional components. Based on its Bayesian evidence, the preferred model for HAT-P-44 consists of two planets, including the transiting component, with the outer planet having a period of 872 days, eccentricity of 0.494 ± 0.081, and a minimum mass of 4.0 M J. Due to aliasing we cannot rule out alternative solutions for the outer planet having a period of 220 days or 438 days. For HAT-P-45, at present there is not enough data to justify the additional free parameters included in a multi-planet model; in this case a single-planet solution is preferred, but the required jitter of 22.5 ± 6.3 m s–1 is relatively high for a star of this type. For HAT-P-46 the preferred solution includes a second planet having a period of 78 days and a minimum mass of 2.0 M J, however the preference for this model over a single-planet model is not very strong. While substantial uncertainties remain as to the presence and/or properties of the outer planetary companions in these systems, the inner transiting planets are well characterized with measured properties that are fairly robust against changes in the assumed models for the outer planets. Continued radial velocity monitoring is necessary to fully characterize these three planetary systems, the properties of which may have important implications for understanding the formation of hot Jupiters.

[1]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[2]  C. G. Tinney,et al.  Four New Exoplanets and Hints of Additional Substellar Companions to Exoplanet Host Stars , 2007 .

[3]  Geza Kovacs,et al.  HAT-P-13b,c: A TRANSITING HOT JUPITER WITH A MASSIVE OUTER COMPANION ON AN ECCENTRIC ORBIT , 2009, 0907.3525.

[4]  A. Claret,et al.  A new non-linear limb-darkening law for LTE stellar atmosphere models III - Sloan filters: Calculations for –5.0 ≤ log [M/H] ≤ +1, 2000 K ≤ T$\mathsf{_{eff}}$ ≤ 50 000 K at several surface gravities , 2004 .

[5]  Z. Csubry,et al.  HAT-P-18b AND HAT-P-19b: TWO LOW-DENSITY SATURN-MASS PLANETS TRANSITING METAL-RICH K STARS , 2010, 1007.4850.

[6]  R. Paul Butler,et al.  Three New “51 Pegasi-Type” Planets , 1997 .

[7]  J. Carpenter Color Transformations for the 2MASS Second Incremental Data Release , 2001, astro-ph/0101463.

[8]  R. P. Butler,et al.  OBLIQUITIES OF HOT JUPITER HOST STARS: EVIDENCE FOR TIDAL INTERACTIONS AND PRIMORDIAL MISALIGNMENTS , 2012, 1206.6105.

[9]  E. Ford,et al.  A FIRST COMPARISON OF KEPLER PLANET CANDIDATES IN SINGLE AND MULTIPLE SYSTEMS , 2011, 1103.3896.

[10]  J. Wright,et al.  Radial velocity jitter in stars from the california and carnegie planet search at keck observatory , 2005 .

[11]  S. Baliunas,et al.  A Prescription for period analysis of unevenly sampled time series , 1986 .

[12]  Cajo J. F. ter Braak,et al.  A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces , 2006, Stat. Comput..

[13]  J. Chambers A hybrid symplectic integrator that permits close encounters between massive bodies , 1999 .

[14]  Debra A. Fischer,et al.  The Exoplanet Orbit Database , 2010, 1012.5676.

[15]  R. Mardling,et al.  The determination of planetary structure in tidally relaxed inclined systems , 2010, 1001.4079.

[16]  J. Valenti,et al.  Spectroscopy Made Easy: A New Tool for Fitting Observations with Synthetic Spectra , 1996 .

[17]  A. Pál An analytical solution for Kepler's problem , 2009 .

[18]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[19]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[20]  J. Valenti,et al.  The Planet-Metallicity Correlation , 2005 .

[21]  P. Conroy,et al.  HATS-3b: AN INFLATED HOT JUPITER TRANSITING AN F-TYPE STAR , 2013, 1306.0624.

[22]  Tokyo Institute of Technology,et al.  HAT-P-34b–HAT-P-37b: FOUR TRANSITING PLANETS MORE MASSIVE THAN JUPITER ORBITING MODERATELY BRIGHT STARS , 2012, 1201.0659.

[23]  R. Dawson,et al.  GIANT PLANETS ORBITING METAL-RICH STARS SHOW SIGNATURES OF PLANET–PLANET INTERACTIONS , 2013, 1302.6244.

[24]  A. Schwarzenberg-Czerny Fast and Statistically Optimal Period Search in Uneven Sampled Observations , 1996 .

[25]  G. Marcy,et al.  LOW STELLAR OBLIQUITIES IN COMPACT MULTIPLANET SYSTEMS , 2013, 1302.4443.

[26]  R. Paul Butler,et al.  Five New Multicomponent Planetary Systems , 2005 .

[27]  B. Scott Gaudi,et al.  EXOFAST: A Fast Exoplanetary Fitting Suite in IDL , 2012, 1206.5798.

[28]  UC Berkeley,et al.  HAT-P-11b: A SUPER-NEPTUNE PLANET TRANSITING A BRIGHT K STAR IN THE KEPLER FIELD , 2009, 0901.0282.

[29]  John C. Geary,et al.  Alignment of the stellar spin with the orbits of a three-planet system , 2012, Nature.

[30]  Jon M. Jenkins,et al.  ARCHITECTURE AND DYNAMICS OF KEPLER'S CANDIDATE MULTIPLE TRANSITING PLANET SYSTEMS , 2011, 1102.0543.

[31]  G. Kov'acs,et al.  A box-fitting algorithm in the search for periodic transits , 2002, astro-ph/0206099.

[32]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[33]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[34]  Cambridge,et al.  HAT-P-25b: A HOT-JUPITER TRANSITING A MODERATELY FAINT G STAR , 2010, 1008.3565.

[35]  Howard Isaacson,et al.  CHROMOSPHERIC ACTIVITY AND JITTER MEASUREMENTS FOR 2630 STARS ON THE CALIFORNIA PLANET SEARCH , 2010, 1009.2301.

[36]  Y.-W. Lee,et al.  Toward Better Age Estimates for Stellar Populations: The Y2 Isochrones for Solar Mixture , 2001 .

[37]  B. J. Fulton,et al.  HAT-P-39b–HAT-P-41b: THREE HIGHLY INFLATED TRANSITING HOT JUPITERS , 2012, 1207.3344.

[38]  Department of Physics,et al.  HAT-P-7b: An Extremely Hot Massive Planet Transiting a Bright Star in the Kepler Field , 2008, 0803.0746.

[39]  A. Dupree,et al.  ADAPTIVE OPTICS IMAGES. II. 12 KEPLER OBJECTS OF INTEREST AND 15 CONFIRMED TRANSITING PLANETS , 2013, 1305.6548.

[40]  R. P. Butler,et al.  A Planet with a 3.1 Day Period around a Solar Twin , 1998 .

[41]  G. Furesz,et al.  HAT-P-16b: A 4 MJ PLANET TRANSITING A BRIGHT STAR ON AN ECCENTRIC ORBIT, , 2010, 1005.2009.

[42]  J. Valenti,et al.  Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs , 2005 .

[43]  R. Paul Butler,et al.  DISCOVERY OF A TRANSITING PLANET AND EIGHT ECLIPSING BINARIES IN HATNet FIELD G205 , 2009 .

[44]  R. Paul Butler,et al.  Evidence for Multiple Companions to υ Andromedae , 1999 .

[45]  A. Sozzetti,et al.  HAT-P-3b: A Heavy-Element-rich Planet Transiting a K Dwarf Star , 2007, 0707.4268.

[46]  R. P. Butler,et al.  ATTAINING DOPPLER PRECISION OF 3 M S-1 , 1996 .

[47]  Massachusetts Institute of Technology,et al.  Improving Stellar and Planetary Parameters of Transiting Planet Systems: The Case of TrES-2 , 2007, 0704.2938.

[48]  A. Sozzetti,et al.  HD 147506b: A Supermassive Planet in an Eccentric Orbit Transiting a Bright Star , 2007, 0705.0126.

[49]  J. Crepp,et al.  THE STELLAR OBLIQUITY AND THE LONG-PERIOD PLANET IN THE HAT-P-17 EXOPLANETARY SYSTEM , 2013, 1301.6289.

[50]  S. Hinkley,et al.  FRIENDS OF HOT JUPITERS. I. A RADIAL VELOCITY SEARCH FOR MASSIVE, LONG-PERIOD COMPANIONS TO CLOSE-IN GAS GIANT PLANETS , 2013, 1312.2954.

[51]  J. Fortney,et al.  Constraining the interior of extrasolar giant planets with the tidal Love number k_2 using the example of HAT-P-13b , 2011, 1112.2087.

[52]  Michael W. Richmond,et al.  TASS Mark IV Photometric Survey of the Northern Sky , 2006 .

[53]  John Asher Johnson,et al.  TEN NEW AND UPDATED MULTIPLANET SYSTEMS AND A SURVEY OF EXOPLANETARY SYSTEMS , 2008, 0812.1582.

[54]  S. Baliunas,et al.  Rotation, convection, and magnetic activity in lower main-sequence stars , 1984 .

[55]  Michigan State University,et al.  A Search for Stars of Very Low Metal Abundance. V. Photoelectric UBV Photometry of Metal-weak Candidates from the Northern HK Survey , 2000, astro-ph/0006178.

[56]  M. Couture,et al.  HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope , 1994, Astronomical Telescopes and Instrumentation.

[57]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[58]  T. Barman,et al.  Two Classes of Hot Jupiters , 2007, 0706.3052.

[59]  K. Stanek,et al.  Wide‐Field Millimagnitude Photometry with the HAT: A Tool for Extrasolar Planet Detection , 2004, astro-ph/0401219.

[60]  P. Gregory A Bayesian Analysis of Extrasolar Planet Data for HD 73526 , 2005 .

[61]  R. P. Butler,et al.  Planetary Companions around Two Solar‐Type Stars: HD 195019 and HD 217107 , 1998, astro-ph/9810420.

[62]  Konstantin Batygin,et al.  DETERMINATION OF THE INTERIOR STRUCTURE OF TRANSITING PLANETS IN MULTIPLE-PLANET SYSTEMS , 2009, 0907.5019.

[63]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[64]  Geza Kovacs,et al.  HAT-P-17b,c: A TRANSITING, ECCENTRIC, HOT SATURN AND A LONG-PERIOD, COLD JUPITER , 2010, The Astrophysical Journal.