An Empirical Study on GAs "Without Parameters"

In this paper we implement GAs that have one or more parameters that are adjusted during the run. In particular we use an existing self-adaptive mutation rate mechanism, propose a new mechanism for self-adaptive crossover rates, and redesign an existing variable population size model. We compare the simple GA with GAs featuring only one of the parameter adjusting mechanisms and with a GA that applies all three mechanisms - and is therefore almost "parameterless". The experimental results on a carefully designed test suite indicate the superiority of the parameterless GA and give a hint on the power of adapting the population size.

[1]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[2]  D. Ackley A connectionist machine for genetic hillclimbing , 1987 .

[3]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[4]  J. David Schaffer,et al.  Proceedings of the third international conference on Genetic algorithms , 1989 .

[5]  L. Darrell Whitley,et al.  Building Better Test Functions , 1995, ICGA.

[6]  P. Beecroft What have you done for me lately? , 1994, Clinical nurse specialist CNS.

[7]  Stephanie Forrest,et al.  Proceedings of the 5th International Conference on Genetic Algorithms , 1993 .

[8]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[9]  Thomas Bck,et al.  Self-adaptation in genetic algorithms , 1991 .

[10]  Thomas Bäck,et al.  Genetic Algorithms and Evolution Strategies - Similarities and Differences , 1990, PPSN.

[11]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (2nd, extended ed.) , 1994 .

[12]  Jeffrey Horn,et al.  Handbook of evolutionary computation , 1997 .

[13]  Lawrence Davis,et al.  Adapting Operator Probabilities in Genetic Algorithms , 1989, ICGA.

[14]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 2000, Springer Berlin Heidelberg.

[15]  Jim Smith,et al.  Self adaptation of mutation rates in a steady state genetic algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[16]  Thomas Bäck,et al.  The Interaction of Mutation Rate, Selection, and Self-Adaptation Within a Genetic Algorithm , 1992, PPSN.

[17]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[18]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[19]  Bryant A. Julstrom,et al.  What Have You Done for Me Lately? Adapting Operator Probabilities in a Steady-State Genetic Algorithm , 1995, ICGA.